船用机动水动力涡轮的声学控制

Margalit Goldschmidt, Michael L. Jonson, J. Horn
{"title":"船用机动水动力涡轮的声学控制","authors":"Margalit Goldschmidt, Michael L. Jonson, J. Horn","doi":"10.1115/imece2019-11381","DOIUrl":null,"url":null,"abstract":"\n Marine Hydrokinetic (MHK) cycloturbines exploit tidal currents to generate sustainable electric power. Because of the harsh marine environment, MHK cycloturbines require frequent maintenance and repair, which for current systems necessitates the use of a ship, making the process difficult and costly. A novel MHK cycloturbine system has been designed that uses pitching foils for maneuver, potentially circumventing the costs and difficulties associated with deployment and repairs. The vehicle fatigue is decreased and the vehicle’s acoustic signature underwater is reduced by design of a novel acoustic controller. This controller specifically reduces the tonal noise at blade rate frequency.\n Each turbine foil radiates noise equivalent to an acoustic dipole at multiples of blade rate frequency, and so the vehicle is modelled as an acoustic multipole. At blade rate frequency, the turbine size compared to its acoustic wavelength allows for the entire vehicle to be treated as a compact source. The effect of turbine clocking on directivity and sound power is shown. The effects of the designed controller to reduce tonal noise at blade rate frequency and multiples are verified experimentally through testing in ARL’s Reverberant Tank facility. Fixing a Subscale Demonstrator (SSD) to a reaction frame provides the ability to measure the integrated loads using load cells. The radiated sound pressure is computed for the load cell data obtained. Acoustic control is implemented using the turbine RPM: turbines are clocked by slowing one turbine relative to another for a short period of time.","PeriodicalId":197121,"journal":{"name":"Volume 11: Acoustics, Vibration, and Phononics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Acoustic Control of a Maneuverable Marine Hydrokinetic Cycloturbine\",\"authors\":\"Margalit Goldschmidt, Michael L. Jonson, J. Horn\",\"doi\":\"10.1115/imece2019-11381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Marine Hydrokinetic (MHK) cycloturbines exploit tidal currents to generate sustainable electric power. Because of the harsh marine environment, MHK cycloturbines require frequent maintenance and repair, which for current systems necessitates the use of a ship, making the process difficult and costly. A novel MHK cycloturbine system has been designed that uses pitching foils for maneuver, potentially circumventing the costs and difficulties associated with deployment and repairs. The vehicle fatigue is decreased and the vehicle’s acoustic signature underwater is reduced by design of a novel acoustic controller. This controller specifically reduces the tonal noise at blade rate frequency.\\n Each turbine foil radiates noise equivalent to an acoustic dipole at multiples of blade rate frequency, and so the vehicle is modelled as an acoustic multipole. At blade rate frequency, the turbine size compared to its acoustic wavelength allows for the entire vehicle to be treated as a compact source. The effect of turbine clocking on directivity and sound power is shown. The effects of the designed controller to reduce tonal noise at blade rate frequency and multiples are verified experimentally through testing in ARL’s Reverberant Tank facility. Fixing a Subscale Demonstrator (SSD) to a reaction frame provides the ability to measure the integrated loads using load cells. The radiated sound pressure is computed for the load cell data obtained. Acoustic control is implemented using the turbine RPM: turbines are clocked by slowing one turbine relative to another for a short period of time.\",\"PeriodicalId\":197121,\"journal\":{\"name\":\"Volume 11: Acoustics, Vibration, and Phononics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11: Acoustics, Vibration, and Phononics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-11381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

海洋水动力(MHK)循环涡轮机利用潮流产生可持续的电力。由于恶劣的海洋环境,MHK循环涡轮机需要频繁的维护和维修,这对于目前的系统来说需要使用一艘船,这使得这个过程变得困难和昂贵。一种新型的MHK循环涡轮系统已经被设计出来,该系统使用俯仰翼进行机动,潜在地规避了部署和维修相关的成本和困难。通过设计一种新型的声学控制器,减轻了水下航行器的疲劳,降低了水下航行器的声学特征。该控制器专门降低叶片速率频率的音调噪声。每个涡轮箔辐射噪声相当于一个声偶极子在叶片速率频率的倍数,因此车辆被建模为一个声多极子。在叶片速率频率下,涡轮机的尺寸与其声波波长相比,使得整个车辆被视为一个紧凑的源。给出了涡轮时钟对指向性和声功率的影响。通过在ARL的混响箱设备上的实验验证了所设计的控制器在叶片速率频率和倍数下的降噪效果。将亚标度演示器(SSD)固定在反应框架上,可以使用测压元件测量综合载荷。根据所获得的测压元件数据计算辐射声压。声学控制是使用涡轮机的RPM来实现的:涡轮机是通过在短时间内相对于另一个涡轮机减慢速度来计时的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic Control of a Maneuverable Marine Hydrokinetic Cycloturbine
Marine Hydrokinetic (MHK) cycloturbines exploit tidal currents to generate sustainable electric power. Because of the harsh marine environment, MHK cycloturbines require frequent maintenance and repair, which for current systems necessitates the use of a ship, making the process difficult and costly. A novel MHK cycloturbine system has been designed that uses pitching foils for maneuver, potentially circumventing the costs and difficulties associated with deployment and repairs. The vehicle fatigue is decreased and the vehicle’s acoustic signature underwater is reduced by design of a novel acoustic controller. This controller specifically reduces the tonal noise at blade rate frequency. Each turbine foil radiates noise equivalent to an acoustic dipole at multiples of blade rate frequency, and so the vehicle is modelled as an acoustic multipole. At blade rate frequency, the turbine size compared to its acoustic wavelength allows for the entire vehicle to be treated as a compact source. The effect of turbine clocking on directivity and sound power is shown. The effects of the designed controller to reduce tonal noise at blade rate frequency and multiples are verified experimentally through testing in ARL’s Reverberant Tank facility. Fixing a Subscale Demonstrator (SSD) to a reaction frame provides the ability to measure the integrated loads using load cells. The radiated sound pressure is computed for the load cell data obtained. Acoustic control is implemented using the turbine RPM: turbines are clocked by slowing one turbine relative to another for a short period of time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信