{"title":"基于词汇表方法的神经数据压缩低功耗VLSI架构","authors":"S. Narasimhan, Yu Zhou, H. Chiel, S. Bhunia","doi":"10.1109/BIOCAS.2007.4463327","DOIUrl":null,"url":null,"abstract":"Modern-day bio-implantable chips for neural prostheses cannot monitor a large number of electrodes at the same time since they suffer from excessively high data rates. Hence, it is imperative to design area and power-efficient digital circuits for appropriate conditioning of the recorded neural signal in order to remain within the bandwidth constraint. Previously, we have proposed an algorithm for neural data compression, which incorporates the concept of creating and maintaining a dynamic vocabulary of neural spike waveforms represented as wavelet transform coefficients. In this paper, we propose an appropriate architecture for low-power and area-efficient VLSI implementation of the scheme. Based on simulation results, the hardware consumes 3.55 muW and 0.36 mW power using 0.18 mum CMOS technology for 1-channel and 100-channel neural recording applications, respectively.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Low-Power VLSI Architecture for Neural Data Compression Using Vocabulary-based Approach\",\"authors\":\"S. Narasimhan, Yu Zhou, H. Chiel, S. Bhunia\",\"doi\":\"10.1109/BIOCAS.2007.4463327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern-day bio-implantable chips for neural prostheses cannot monitor a large number of electrodes at the same time since they suffer from excessively high data rates. Hence, it is imperative to design area and power-efficient digital circuits for appropriate conditioning of the recorded neural signal in order to remain within the bandwidth constraint. Previously, we have proposed an algorithm for neural data compression, which incorporates the concept of creating and maintaining a dynamic vocabulary of neural spike waveforms represented as wavelet transform coefficients. In this paper, we propose an appropriate architecture for low-power and area-efficient VLSI implementation of the scheme. Based on simulation results, the hardware consumes 3.55 muW and 0.36 mW power using 0.18 mum CMOS technology for 1-channel and 100-channel neural recording applications, respectively.\",\"PeriodicalId\":273819,\"journal\":{\"name\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2007.4463327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
现代用于神经假体的生物植入芯片由于数据速率过高,无法同时监测大量电极。因此,必须设计面积和功率效率高的数字电路,以适当地调节所记录的神经信号,以保持在带宽限制内。之前,我们提出了一种神经数据压缩算法,该算法包含了创建和维护以小波变换系数表示的神经尖峰波形动态词汇表的概念。在本文中,我们提出了一种适合低功耗和面积高效的VLSI实现方案的架构。基于仿真结果,采用0.18 μ m CMOS技术的硬件功耗分别为3.55 μ w和0.36 μ w,用于1通道和100通道神经记录应用。
Low-Power VLSI Architecture for Neural Data Compression Using Vocabulary-based Approach
Modern-day bio-implantable chips for neural prostheses cannot monitor a large number of electrodes at the same time since they suffer from excessively high data rates. Hence, it is imperative to design area and power-efficient digital circuits for appropriate conditioning of the recorded neural signal in order to remain within the bandwidth constraint. Previously, we have proposed an algorithm for neural data compression, which incorporates the concept of creating and maintaining a dynamic vocabulary of neural spike waveforms represented as wavelet transform coefficients. In this paper, we propose an appropriate architecture for low-power and area-efficient VLSI implementation of the scheme. Based on simulation results, the hardware consumes 3.55 muW and 0.36 mW power using 0.18 mum CMOS technology for 1-channel and 100-channel neural recording applications, respectively.