基于词汇表方法的神经数据压缩低功耗VLSI架构

S. Narasimhan, Yu Zhou, H. Chiel, S. Bhunia
{"title":"基于词汇表方法的神经数据压缩低功耗VLSI架构","authors":"S. Narasimhan, Yu Zhou, H. Chiel, S. Bhunia","doi":"10.1109/BIOCAS.2007.4463327","DOIUrl":null,"url":null,"abstract":"Modern-day bio-implantable chips for neural prostheses cannot monitor a large number of electrodes at the same time since they suffer from excessively high data rates. Hence, it is imperative to design area and power-efficient digital circuits for appropriate conditioning of the recorded neural signal in order to remain within the bandwidth constraint. Previously, we have proposed an algorithm for neural data compression, which incorporates the concept of creating and maintaining a dynamic vocabulary of neural spike waveforms represented as wavelet transform coefficients. In this paper, we propose an appropriate architecture for low-power and area-efficient VLSI implementation of the scheme. Based on simulation results, the hardware consumes 3.55 muW and 0.36 mW power using 0.18 mum CMOS technology for 1-channel and 100-channel neural recording applications, respectively.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Low-Power VLSI Architecture for Neural Data Compression Using Vocabulary-based Approach\",\"authors\":\"S. Narasimhan, Yu Zhou, H. Chiel, S. Bhunia\",\"doi\":\"10.1109/BIOCAS.2007.4463327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern-day bio-implantable chips for neural prostheses cannot monitor a large number of electrodes at the same time since they suffer from excessively high data rates. Hence, it is imperative to design area and power-efficient digital circuits for appropriate conditioning of the recorded neural signal in order to remain within the bandwidth constraint. Previously, we have proposed an algorithm for neural data compression, which incorporates the concept of creating and maintaining a dynamic vocabulary of neural spike waveforms represented as wavelet transform coefficients. In this paper, we propose an appropriate architecture for low-power and area-efficient VLSI implementation of the scheme. Based on simulation results, the hardware consumes 3.55 muW and 0.36 mW power using 0.18 mum CMOS technology for 1-channel and 100-channel neural recording applications, respectively.\",\"PeriodicalId\":273819,\"journal\":{\"name\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2007.4463327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

现代用于神经假体的生物植入芯片由于数据速率过高,无法同时监测大量电极。因此,必须设计面积和功率效率高的数字电路,以适当地调节所记录的神经信号,以保持在带宽限制内。之前,我们提出了一种神经数据压缩算法,该算法包含了创建和维护以小波变换系数表示的神经尖峰波形动态词汇表的概念。在本文中,我们提出了一种适合低功耗和面积高效的VLSI实现方案的架构。基于仿真结果,采用0.18 μ m CMOS技术的硬件功耗分别为3.55 μ w和0.36 μ w,用于1通道和100通道神经记录应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Power VLSI Architecture for Neural Data Compression Using Vocabulary-based Approach
Modern-day bio-implantable chips for neural prostheses cannot monitor a large number of electrodes at the same time since they suffer from excessively high data rates. Hence, it is imperative to design area and power-efficient digital circuits for appropriate conditioning of the recorded neural signal in order to remain within the bandwidth constraint. Previously, we have proposed an algorithm for neural data compression, which incorporates the concept of creating and maintaining a dynamic vocabulary of neural spike waveforms represented as wavelet transform coefficients. In this paper, we propose an appropriate architecture for low-power and area-efficient VLSI implementation of the scheme. Based on simulation results, the hardware consumes 3.55 muW and 0.36 mW power using 0.18 mum CMOS technology for 1-channel and 100-channel neural recording applications, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信