Hirthik Mathavan, Zhen Tan, Nivedh Mudiam, Huan Liu
{"title":"基于感应线性探测的少射节点分类","authors":"Hirthik Mathavan, Zhen Tan, Nivedh Mudiam, Huan Liu","doi":"10.48550/arXiv.2306.08192","DOIUrl":null,"url":null,"abstract":"Meta-learning has emerged as a powerful training strategy for few-shot node classification, demonstrating its effectiveness in the transductive setting. However, the existing literature predominantly focuses on transductive few-shot node classification, neglecting the widely studied inductive setting in the broader few-shot learning community. This oversight limits our comprehensive understanding of the performance of meta-learning based methods on graph data. In this work, we conduct an empirical study to highlight the limitations of current frameworks in the inductive few-shot node classification setting. Additionally, we propose a simple yet competitive baseline approach specifically tailored for inductive few-shot node classification tasks. We hope our work can provide a new path forward to better understand how the meta-learning paradigm works in the graph domain.","PeriodicalId":336133,"journal":{"name":"International Conference on Social, Cultural, and Behavioral Modeling","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inductive Linear Probing for Few-shot Node Classification\",\"authors\":\"Hirthik Mathavan, Zhen Tan, Nivedh Mudiam, Huan Liu\",\"doi\":\"10.48550/arXiv.2306.08192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meta-learning has emerged as a powerful training strategy for few-shot node classification, demonstrating its effectiveness in the transductive setting. However, the existing literature predominantly focuses on transductive few-shot node classification, neglecting the widely studied inductive setting in the broader few-shot learning community. This oversight limits our comprehensive understanding of the performance of meta-learning based methods on graph data. In this work, we conduct an empirical study to highlight the limitations of current frameworks in the inductive few-shot node classification setting. Additionally, we propose a simple yet competitive baseline approach specifically tailored for inductive few-shot node classification tasks. We hope our work can provide a new path forward to better understand how the meta-learning paradigm works in the graph domain.\",\"PeriodicalId\":336133,\"journal\":{\"name\":\"International Conference on Social, Cultural, and Behavioral Modeling\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Social, Cultural, and Behavioral Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.08192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Social, Cultural, and Behavioral Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.08192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inductive Linear Probing for Few-shot Node Classification
Meta-learning has emerged as a powerful training strategy for few-shot node classification, demonstrating its effectiveness in the transductive setting. However, the existing literature predominantly focuses on transductive few-shot node classification, neglecting the widely studied inductive setting in the broader few-shot learning community. This oversight limits our comprehensive understanding of the performance of meta-learning based methods on graph data. In this work, we conduct an empirical study to highlight the limitations of current frameworks in the inductive few-shot node classification setting. Additionally, we propose a simple yet competitive baseline approach specifically tailored for inductive few-shot node classification tasks. We hope our work can provide a new path forward to better understand how the meta-learning paradigm works in the graph domain.