利用微阵列数据进行癌症分类的基因选择方法比较研究

M. Babu, K. Sarkar
{"title":"利用微阵列数据进行癌症分类的基因选择方法比较研究","authors":"M. Babu, K. Sarkar","doi":"10.1109/ICRCICN.2016.7813657","DOIUrl":null,"url":null,"abstract":"Due to the high dimensionality of gene expression data, gene selection is an important step for improving gene expression data classification performance. This is true for the case of cancer classification using gene expression data. In this paper, we compare various feature selection methods that select appropriate number of genes as the features which are used for cancer classification. We have used several machine learning algorithms along with the different feature selection (gene) methods for developing a system for more accurately classifying cancer using microarray data. To prove effectiveness of the different gene selection methods, we have conducted a number of experiments that compare the cancer classification performance with and without performing gene selection. Results reveal that the classification system that performs gene selection obtains the better classification accuracy with a small number of genes.","PeriodicalId":254393,"journal":{"name":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A comparative study of gene selection methods for cancer classification using microarray data\",\"authors\":\"M. Babu, K. Sarkar\",\"doi\":\"10.1109/ICRCICN.2016.7813657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the high dimensionality of gene expression data, gene selection is an important step for improving gene expression data classification performance. This is true for the case of cancer classification using gene expression data. In this paper, we compare various feature selection methods that select appropriate number of genes as the features which are used for cancer classification. We have used several machine learning algorithms along with the different feature selection (gene) methods for developing a system for more accurately classifying cancer using microarray data. To prove effectiveness of the different gene selection methods, we have conducted a number of experiments that compare the cancer classification performance with and without performing gene selection. Results reveal that the classification system that performs gene selection obtains the better classification accuracy with a small number of genes.\",\"PeriodicalId\":254393,\"journal\":{\"name\":\"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRCICN.2016.7813657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2016.7813657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

由于基因表达数据的高维性,基因选择是提高基因表达数据分类性能的重要步骤。这对于使用基因表达数据进行癌症分类的案例来说是正确的。在本文中,我们比较了选择适当数量的基因作为癌症分类特征的各种特征选择方法。我们使用了几种机器学习算法以及不同的特征选择(基因)方法来开发一个使用微阵列数据更准确地分类癌症的系统。为了证明不同基因选择方法的有效性,我们进行了一些实验,比较了进行基因选择和不进行基因选择的癌症分类性能。结果表明,采用基因选择的分类系统在基因数量较少的情况下获得了较好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of gene selection methods for cancer classification using microarray data
Due to the high dimensionality of gene expression data, gene selection is an important step for improving gene expression data classification performance. This is true for the case of cancer classification using gene expression data. In this paper, we compare various feature selection methods that select appropriate number of genes as the features which are used for cancer classification. We have used several machine learning algorithms along with the different feature selection (gene) methods for developing a system for more accurately classifying cancer using microarray data. To prove effectiveness of the different gene selection methods, we have conducted a number of experiments that compare the cancer classification performance with and without performing gene selection. Results reveal that the classification system that performs gene selection obtains the better classification accuracy with a small number of genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信