用于低温梯度发电的热电模块结构

Y. Meydbray, R. Singh, A. Shakouri
{"title":"用于低温梯度发电的热电模块结构","authors":"Y. Meydbray, R. Singh, A. Shakouri","doi":"10.1109/ICT.2005.1519958","DOIUrl":null,"url":null,"abstract":"Energy related carbon dioxide emissions are the largest contributors to greenhouse gasses [1]. Thermoelectric power generation that exploits natural temperature differences between the air and earth can be a zero-emission replacement to small stand-alone power sources. Maximizing the temperature drop across the module is crucial to achieving optimal output power. An equation relating output power to thermoelectric module parameters is derived. In addition, several configurations are investigated experimentally. Output power shows a significant dependence on module surface area. In the setups tested, one side of the thermoelectric module was thermally coupled to the earth, while the other side was left exposed to air. This paper evaluates three 110hour experiments. The surface area of the exposed side was varied by a factor of about 15 without changing the area covered by thermoelectric elements. The output power shows a direct dependence on exposed surface area and changes by about a factor of 25. Nomenclature S surface area of module A cross sectional area covered by elements KA thermal conductivity of air Ke thermal conductivity of elements ρ resistivity of elements q heat transfer through module q’ heat transfer from module to air U heat transfer coefficient TA air temperature TC cold side temperature TH hot side temperature L element length α Seebeck coefficient Rtot. total thermal resistance of module N number of elements","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Thermoelectric module construction for low temperature gradient power generation\",\"authors\":\"Y. Meydbray, R. Singh, A. Shakouri\",\"doi\":\"10.1109/ICT.2005.1519958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy related carbon dioxide emissions are the largest contributors to greenhouse gasses [1]. Thermoelectric power generation that exploits natural temperature differences between the air and earth can be a zero-emission replacement to small stand-alone power sources. Maximizing the temperature drop across the module is crucial to achieving optimal output power. An equation relating output power to thermoelectric module parameters is derived. In addition, several configurations are investigated experimentally. Output power shows a significant dependence on module surface area. In the setups tested, one side of the thermoelectric module was thermally coupled to the earth, while the other side was left exposed to air. This paper evaluates three 110hour experiments. The surface area of the exposed side was varied by a factor of about 15 without changing the area covered by thermoelectric elements. The output power shows a direct dependence on exposed surface area and changes by about a factor of 25. Nomenclature S surface area of module A cross sectional area covered by elements KA thermal conductivity of air Ke thermal conductivity of elements ρ resistivity of elements q heat transfer through module q’ heat transfer from module to air U heat transfer coefficient TA air temperature TC cold side temperature TH hot side temperature L element length α Seebeck coefficient Rtot. total thermal resistance of module N number of elements\",\"PeriodicalId\":422400,\"journal\":{\"name\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2005.1519958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2005.1519958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

与能源相关的二氧化碳排放是温室气体的最大贡献者[1]。利用空气和地球之间的自然温差的热电发电可以成为小型独立电源的零排放替代品。最大限度地降低整个模块的温度对于实现最佳输出功率至关重要。导出了输出功率与热电模块参数的关系式。此外,还对几种构型进行了实验研究。输出功率显示显著依赖于模块的表面积。在测试的装置中,热电模块的一侧与地面热耦合,而另一侧暴露在空气中。本文对三个110小时的实验进行了评价。在不改变热电元件所覆盖的面积的情况下,暴露侧的表面积变化了约15倍。输出功率显示直接依赖于暴露的表面积和变化约25的因数。术语S元件表面积A元件所覆盖的横截面积KA空气导热系数Ke元件导热系数ρ元件电阻率q通过元件传热q '模块向空气传热U传热系数TA空气温度TC冷侧温度TH热侧温度L元件长度α塞贝克系数Rtot。模块总热阻N个元件个数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermoelectric module construction for low temperature gradient power generation
Energy related carbon dioxide emissions are the largest contributors to greenhouse gasses [1]. Thermoelectric power generation that exploits natural temperature differences between the air and earth can be a zero-emission replacement to small stand-alone power sources. Maximizing the temperature drop across the module is crucial to achieving optimal output power. An equation relating output power to thermoelectric module parameters is derived. In addition, several configurations are investigated experimentally. Output power shows a significant dependence on module surface area. In the setups tested, one side of the thermoelectric module was thermally coupled to the earth, while the other side was left exposed to air. This paper evaluates three 110hour experiments. The surface area of the exposed side was varied by a factor of about 15 without changing the area covered by thermoelectric elements. The output power shows a direct dependence on exposed surface area and changes by about a factor of 25. Nomenclature S surface area of module A cross sectional area covered by elements KA thermal conductivity of air Ke thermal conductivity of elements ρ resistivity of elements q heat transfer through module q’ heat transfer from module to air U heat transfer coefficient TA air temperature TC cold side temperature TH hot side temperature L element length α Seebeck coefficient Rtot. total thermal resistance of module N number of elements
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信