最近邻分类器的设计及其在日文字符识别中的应用

Tao Hong, S. Lam, J. Hull, S. Srihari
{"title":"最近邻分类器的设计及其在日文字符识别中的应用","authors":"Tao Hong, S. Lam, J. Hull, S. Srihari","doi":"10.1109/ICDAR.1995.598992","DOIUrl":null,"url":null,"abstract":"The nearest neighbor (NN) approach is a powerful nonparametric technique for pattern classification tasks. In this paper, algorithms for prototype reduction, hierarchical prototype organization and fast NN search are described. To remove redundant category prototypes and to avoid redundant comparisons, the algorithms explain geometrical information of a given prototype set which is represented approximately by computing k-nearest/farthest neighbors of each prototype. The performance of a NN classifier using those algorithms for Japanese character recognition is reported.","PeriodicalId":273519,"journal":{"name":"Proceedings of 3rd International Conference on Document Analysis and Recognition","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"The design of a nearest-neighbor classifier and its use for Japanese character recognition\",\"authors\":\"Tao Hong, S. Lam, J. Hull, S. Srihari\",\"doi\":\"10.1109/ICDAR.1995.598992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nearest neighbor (NN) approach is a powerful nonparametric technique for pattern classification tasks. In this paper, algorithms for prototype reduction, hierarchical prototype organization and fast NN search are described. To remove redundant category prototypes and to avoid redundant comparisons, the algorithms explain geometrical information of a given prototype set which is represented approximately by computing k-nearest/farthest neighbors of each prototype. The performance of a NN classifier using those algorithms for Japanese character recognition is reported.\",\"PeriodicalId\":273519,\"journal\":{\"name\":\"Proceedings of 3rd International Conference on Document Analysis and Recognition\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.1995.598992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1995.598992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

最近邻(NN)方法是一种强大的非参数模式分类技术。本文介绍了原型约简算法、分层原型组织算法和快速神经网络搜索算法。为了消除冗余的类别原型,避免冗余的比较,该算法通过计算每个原型的k个最近邻/最远邻居来近似地解释给定原型集的几何信息。本文报道了使用这些算法的神经网络分类器在日文字符识别中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The design of a nearest-neighbor classifier and its use for Japanese character recognition
The nearest neighbor (NN) approach is a powerful nonparametric technique for pattern classification tasks. In this paper, algorithms for prototype reduction, hierarchical prototype organization and fast NN search are described. To remove redundant category prototypes and to avoid redundant comparisons, the algorithms explain geometrical information of a given prototype set which is represented approximately by computing k-nearest/farthest neighbors of each prototype. The performance of a NN classifier using those algorithms for Japanese character recognition is reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信