基于视频的精细注意力网络的人物再识别

Tanzila Rahman, Mrigank Rochan, Yang Wang
{"title":"基于视频的精细注意力网络的人物再识别","authors":"Tanzila Rahman, Mrigank Rochan, Yang Wang","doi":"10.1109/AVSS.2019.8909869","DOIUrl":null,"url":null,"abstract":"We consider the problem of video-based person reidentification. The goal is to identify a person from videos captured under different cameras. In this paper, we propose an efficient attention based model for person re-identifying from videos. Our method generates an attention score for each frame based on frame-level features. The attention scores of all frames in a video are used to produce a weighted feature vector for the input video. This video-level feature vector is refined iteratively for re-identifying persons from videos. Unlike most existing deep learning methods that use global or spatial representation, our approach focuses on attention scores. Extensive experiments on three benchmark datasets demonstrate that our method achieves the state-of-the-art performance.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Video-Based Person Re-Identification using Refined Attention Networks\",\"authors\":\"Tanzila Rahman, Mrigank Rochan, Yang Wang\",\"doi\":\"10.1109/AVSS.2019.8909869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of video-based person reidentification. The goal is to identify a person from videos captured under different cameras. In this paper, we propose an efficient attention based model for person re-identifying from videos. Our method generates an attention score for each frame based on frame-level features. The attention scores of all frames in a video are used to produce a weighted feature vector for the input video. This video-level feature vector is refined iteratively for re-identifying persons from videos. Unlike most existing deep learning methods that use global or spatial representation, our approach focuses on attention scores. Extensive experiments on three benchmark datasets demonstrate that our method achieves the state-of-the-art performance.\",\"PeriodicalId\":243194,\"journal\":{\"name\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2019.8909869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑了基于视频的人物再识别问题。目标是从不同摄像机拍摄的视频中识别出一个人。本文提出了一种高效的基于注意力的视频人物再识别模型。我们的方法基于帧级特征为每一帧生成一个注意力分数。视频中所有帧的注意力分数被用来生成输入视频的加权特征向量。该视频级特征向量迭代细化,用于重新识别视频中的人物。与大多数使用全局或空间表示的现有深度学习方法不同,我们的方法侧重于注意力得分。在三个基准数据集上的大量实验表明,我们的方法达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video-Based Person Re-Identification using Refined Attention Networks
We consider the problem of video-based person reidentification. The goal is to identify a person from videos captured under different cameras. In this paper, we propose an efficient attention based model for person re-identifying from videos. Our method generates an attention score for each frame based on frame-level features. The attention scores of all frames in a video are used to produce a weighted feature vector for the input video. This video-level feature vector is refined iteratively for re-identifying persons from videos. Unlike most existing deep learning methods that use global or spatial representation, our approach focuses on attention scores. Extensive experiments on three benchmark datasets demonstrate that our method achieves the state-of-the-art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信