{"title":"具有恒定偏差的抛硬币意味着单向函数","authors":"Iftach Haitner, Eran Omri","doi":"10.1137/120887631","DOIUrl":null,"url":null,"abstract":"It is well known (cf., Impagliazzo and Luby [FOCS '89]) that the existence of almost all ``interesting\" cryptographic applications, i.e., ones that cannot hold information theoretically, implies one-way functions. An important exception where the above implication is not known, however, is the case of coin-flipping protocols. Such protocols allow honest parties to mutually flip an unbiased coin, while guaranteeing that even a cheating (efficient) party cannot bias the output of the protocol by much. Impagliazzo and Luby proved that coin-flipping protocols that are safe against negligible bias do imply one-way functions, and, very recently, Maji, Prabhakaran, and Sahai [FOCS '10] proved the same for constant-round protocols (with any non-trivial bias). For the general case, however, no such implication was known. We make progress towards answering the above fundamental question, showing that (strong) coin-flipping protocols safe against a constant bias (concretely, $\\frac{\\sqrt2 -1}2 - o(1)$) imply one-way functions.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Coin Flipping with Constant Bias Implies One-Way Functions\",\"authors\":\"Iftach Haitner, Eran Omri\",\"doi\":\"10.1137/120887631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known (cf., Impagliazzo and Luby [FOCS '89]) that the existence of almost all ``interesting\\\" cryptographic applications, i.e., ones that cannot hold information theoretically, implies one-way functions. An important exception where the above implication is not known, however, is the case of coin-flipping protocols. Such protocols allow honest parties to mutually flip an unbiased coin, while guaranteeing that even a cheating (efficient) party cannot bias the output of the protocol by much. Impagliazzo and Luby proved that coin-flipping protocols that are safe against negligible bias do imply one-way functions, and, very recently, Maji, Prabhakaran, and Sahai [FOCS '10] proved the same for constant-round protocols (with any non-trivial bias). For the general case, however, no such implication was known. We make progress towards answering the above fundamental question, showing that (strong) coin-flipping protocols safe against a constant bias (concretely, $\\\\frac{\\\\sqrt2 -1}2 - o(1)$) imply one-way functions.\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/120887631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/120887631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coin Flipping with Constant Bias Implies One-Way Functions
It is well known (cf., Impagliazzo and Luby [FOCS '89]) that the existence of almost all ``interesting" cryptographic applications, i.e., ones that cannot hold information theoretically, implies one-way functions. An important exception where the above implication is not known, however, is the case of coin-flipping protocols. Such protocols allow honest parties to mutually flip an unbiased coin, while guaranteeing that even a cheating (efficient) party cannot bias the output of the protocol by much. Impagliazzo and Luby proved that coin-flipping protocols that are safe against negligible bias do imply one-way functions, and, very recently, Maji, Prabhakaran, and Sahai [FOCS '10] proved the same for constant-round protocols (with any non-trivial bias). For the general case, however, no such implication was known. We make progress towards answering the above fundamental question, showing that (strong) coin-flipping protocols safe against a constant bias (concretely, $\frac{\sqrt2 -1}2 - o(1)$) imply one-way functions.