{"title":"AWZone:灾后设置中的特设WiFi分区","authors":"T. Khan, Tusher Chakraborty, A. Islam","doi":"10.1145/3001913.3006651","DOIUrl":null,"url":null,"abstract":"Indoor localization or zonification in disaster affected settings is a challenging research problem. Existing studies encompass localization and tracking of first-responders or fire fighters using wireless sensor networks. In addition to that, fast evacuation, routing, and planning have also been proposed. However, the problem of locating survivors or victims is yet to be explored to the full potential. State-of-the-art literature often employ infrastructure dependent solutions, for example, WiFi localization using WiFi access points exploiting fingerprinting techniques, Pedestrian Dead Reckoning (PDR) starting from known locations, etc. Owing to unpredictable and dynamic nature of disaster affected environments, infrastructure dependent solutions are seldom useful. Therefore, in this study, we propose an ad hoc WiFi zonification technique (named as AWZone) that is independent of any infrastructural settings. AWZone attempts to perform localization through exploiting commodity smartphones as a beaconing device and successively searching and narrowing down the search space. We perform two testbed experiments. The results reveal that, for a single survivor or victim, AWZone can identify the search space and estimate a location with an approximate 1.5m localization error through eliminating incorrect zones from a set of possible results.","PeriodicalId":204042,"journal":{"name":"Proceedings of the 7th Annual Symposium on Computing for Development","volume":"74 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AWZone: Ad hoc WiFi Zonification in Post-Disaster Settings\",\"authors\":\"T. Khan, Tusher Chakraborty, A. Islam\",\"doi\":\"10.1145/3001913.3006651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor localization or zonification in disaster affected settings is a challenging research problem. Existing studies encompass localization and tracking of first-responders or fire fighters using wireless sensor networks. In addition to that, fast evacuation, routing, and planning have also been proposed. However, the problem of locating survivors or victims is yet to be explored to the full potential. State-of-the-art literature often employ infrastructure dependent solutions, for example, WiFi localization using WiFi access points exploiting fingerprinting techniques, Pedestrian Dead Reckoning (PDR) starting from known locations, etc. Owing to unpredictable and dynamic nature of disaster affected environments, infrastructure dependent solutions are seldom useful. Therefore, in this study, we propose an ad hoc WiFi zonification technique (named as AWZone) that is independent of any infrastructural settings. AWZone attempts to perform localization through exploiting commodity smartphones as a beaconing device and successively searching and narrowing down the search space. We perform two testbed experiments. The results reveal that, for a single survivor or victim, AWZone can identify the search space and estimate a location with an approximate 1.5m localization error through eliminating incorrect zones from a set of possible results.\",\"PeriodicalId\":204042,\"journal\":{\"name\":\"Proceedings of the 7th Annual Symposium on Computing for Development\",\"volume\":\"74 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th Annual Symposium on Computing for Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3001913.3006651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Annual Symposium on Computing for Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3001913.3006651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AWZone: Ad hoc WiFi Zonification in Post-Disaster Settings
Indoor localization or zonification in disaster affected settings is a challenging research problem. Existing studies encompass localization and tracking of first-responders or fire fighters using wireless sensor networks. In addition to that, fast evacuation, routing, and planning have also been proposed. However, the problem of locating survivors or victims is yet to be explored to the full potential. State-of-the-art literature often employ infrastructure dependent solutions, for example, WiFi localization using WiFi access points exploiting fingerprinting techniques, Pedestrian Dead Reckoning (PDR) starting from known locations, etc. Owing to unpredictable and dynamic nature of disaster affected environments, infrastructure dependent solutions are seldom useful. Therefore, in this study, we propose an ad hoc WiFi zonification technique (named as AWZone) that is independent of any infrastructural settings. AWZone attempts to perform localization through exploiting commodity smartphones as a beaconing device and successively searching and narrowing down the search space. We perform two testbed experiments. The results reveal that, for a single survivor or victim, AWZone can identify the search space and estimate a location with an approximate 1.5m localization error through eliminating incorrect zones from a set of possible results.