基于电池和超级电容器的混合储能系统的高可靠监测和均衡

N. Jabbour, E. Tsioumas, M. Koseoglou, C. Mademlis
{"title":"基于电池和超级电容器的混合储能系统的高可靠监测和均衡","authors":"N. Jabbour, E. Tsioumas, M. Koseoglou, C. Mademlis","doi":"10.1109/SPEC.2018.8636029","DOIUrl":null,"url":null,"abstract":"This paper proposes a highly reliable monitoring and equalization scheme for a hybrid energy storage system (HESS) with batteries (BTs) and supercapacitors (SCs). The system is properly designed for electric motor drives in building applications. However, the proposed system can also be applied in any other building applications by slightly changing the control algorithm. The high motoring reliability in the suggested system is attained by evaluating the performance of each SC and BT considering the history and the HESS operation. The high equalization reliability is achieved through a new topology and a control algorithm that properly manage an auxiliary SC-based ESS which serves as a backup energy bank in order to provide the required energy in any weak cells of the main HESS for equalizing their voltage as well as enhancing the dynamic performance of the main application. The effectiveness of the proposed monitoring and equalization control scheme has been validated by several simulation results that are extensively discussed throughout the paper.","PeriodicalId":335893,"journal":{"name":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Highly Reliable Monitoring and Equalization in a Hybrid Energy Storage System with Batteries and Supercapacitors for Electric Motor Drives in Building Applications\",\"authors\":\"N. Jabbour, E. Tsioumas, M. Koseoglou, C. Mademlis\",\"doi\":\"10.1109/SPEC.2018.8636029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a highly reliable monitoring and equalization scheme for a hybrid energy storage system (HESS) with batteries (BTs) and supercapacitors (SCs). The system is properly designed for electric motor drives in building applications. However, the proposed system can also be applied in any other building applications by slightly changing the control algorithm. The high motoring reliability in the suggested system is attained by evaluating the performance of each SC and BT considering the history and the HESS operation. The high equalization reliability is achieved through a new topology and a control algorithm that properly manage an auxiliary SC-based ESS which serves as a backup energy bank in order to provide the required energy in any weak cells of the main HESS for equalizing their voltage as well as enhancing the dynamic performance of the main application. The effectiveness of the proposed monitoring and equalization control scheme has been validated by several simulation results that are extensively discussed throughout the paper.\",\"PeriodicalId\":335893,\"journal\":{\"name\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2018.8636029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2018.8636029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种高可靠的电池与超级电容器混合储能系统(HESS)监测与均衡方案。该系统是为建筑应用中的电动机驱动而设计的。然而,所提出的系统也可以应用于任何其他建筑应用中,只需稍微改变控制算法。考虑历史和HESS运行,通过评估每个SC和BT的性能,获得了建议系统的高运动可靠性。通过一种新的拓扑结构和一种控制算法来实现高均衡可靠性,该算法适当地管理一个辅助的基于sc的ESS,作为备用能量库,以便为主HESS的任何弱单元提供所需的能量,以均衡它们的电压,并增强主应用的动态性能。所提出的监测和均衡控制方案的有效性已通过几个仿真结果得到验证,并在本文中进行了广泛的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Reliable Monitoring and Equalization in a Hybrid Energy Storage System with Batteries and Supercapacitors for Electric Motor Drives in Building Applications
This paper proposes a highly reliable monitoring and equalization scheme for a hybrid energy storage system (HESS) with batteries (BTs) and supercapacitors (SCs). The system is properly designed for electric motor drives in building applications. However, the proposed system can also be applied in any other building applications by slightly changing the control algorithm. The high motoring reliability in the suggested system is attained by evaluating the performance of each SC and BT considering the history and the HESS operation. The high equalization reliability is achieved through a new topology and a control algorithm that properly manage an auxiliary SC-based ESS which serves as a backup energy bank in order to provide the required energy in any weak cells of the main HESS for equalizing their voltage as well as enhancing the dynamic performance of the main application. The effectiveness of the proposed monitoring and equalization control scheme has been validated by several simulation results that are extensively discussed throughout the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信