{"title":"视网膜眼底图像中基于硬渗出物的糖尿病性黄斑水肿严重程度评估","authors":"D. K. Prasad, L. Vibha, K. Venugopal","doi":"10.1504/IJMEI.2018.10014082","DOIUrl":null,"url":null,"abstract":"Diabetic macular edema (DME) is a consequence of diabetic retinopathy characterised by the abnormal accumulation of fluid and protein deposit in the macula region of the retina. Prior disclosure of even a trivial trace of DME is essential as it could consequently lead to blurred vision. DME can be diagnosed by the presence of exudates (glossy lesions) in the retinal fundus images. In this work, OD and macula are detected using morphological operation and hard exudates are segmented. Exudates are classified using early treatment diabetic retinopathy standard as normal, moderate or severe cases. The proposed work also incorporates the extraction of various features from the retinal fundus image. Various textural and exudate features are extracted and fed to a classifier to detect DME. Experiments are performed on a publically available database. Performance is evaluated with metrics like accuracy, sensitivity, specificity and accuracy. The results obtained are promising.","PeriodicalId":193362,"journal":{"name":"Int. J. Medical Eng. Informatics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hard exudate based severity assessment of diabetic macular edema from retinal fundus images\",\"authors\":\"D. K. Prasad, L. Vibha, K. Venugopal\",\"doi\":\"10.1504/IJMEI.2018.10014082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic macular edema (DME) is a consequence of diabetic retinopathy characterised by the abnormal accumulation of fluid and protein deposit in the macula region of the retina. Prior disclosure of even a trivial trace of DME is essential as it could consequently lead to blurred vision. DME can be diagnosed by the presence of exudates (glossy lesions) in the retinal fundus images. In this work, OD and macula are detected using morphological operation and hard exudates are segmented. Exudates are classified using early treatment diabetic retinopathy standard as normal, moderate or severe cases. The proposed work also incorporates the extraction of various features from the retinal fundus image. Various textural and exudate features are extracted and fed to a classifier to detect DME. Experiments are performed on a publically available database. Performance is evaluated with metrics like accuracy, sensitivity, specificity and accuracy. The results obtained are promising.\",\"PeriodicalId\":193362,\"journal\":{\"name\":\"Int. J. Medical Eng. Informatics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Medical Eng. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMEI.2018.10014082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Medical Eng. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMEI.2018.10014082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hard exudate based severity assessment of diabetic macular edema from retinal fundus images
Diabetic macular edema (DME) is a consequence of diabetic retinopathy characterised by the abnormal accumulation of fluid and protein deposit in the macula region of the retina. Prior disclosure of even a trivial trace of DME is essential as it could consequently lead to blurred vision. DME can be diagnosed by the presence of exudates (glossy lesions) in the retinal fundus images. In this work, OD and macula are detected using morphological operation and hard exudates are segmented. Exudates are classified using early treatment diabetic retinopathy standard as normal, moderate or severe cases. The proposed work also incorporates the extraction of various features from the retinal fundus image. Various textural and exudate features are extracted and fed to a classifier to detect DME. Experiments are performed on a publically available database. Performance is evaluated with metrics like accuracy, sensitivity, specificity and accuracy. The results obtained are promising.