Gushel-Mukai型kuznetsov分量的稳定性条件和模空间

Alexander Perry, L. Pertusi, Xiaolei Zhao
{"title":"Gushel-Mukai型kuznetsov分量的稳定性条件和模空间","authors":"Alexander Perry, L. Pertusi, Xiaolei Zhao","doi":"10.2140/gt.2022.26.3055","DOIUrl":null,"url":null,"abstract":"We prove the existence of Bridgeland stability conditions on the Kuznetsov components of Gushel-Mukai varieties, and describe the structure of moduli spaces of Bridgeland semistable objects in these categories in the even-dimensional case. As applications, we construct a new infinite series of unirational locally complete families of polarized hyperkahler varieties of K3 type, and characterize Hodge-theoretically when the Kuznetsov component of an even-dimensional Gushel-Mukai variety is equivalent to the derived category of a K3 surface.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Stability conditions and moduli spaces for\\nKuznetsov components of Gushel–Mukai varieties\",\"authors\":\"Alexander Perry, L. Pertusi, Xiaolei Zhao\",\"doi\":\"10.2140/gt.2022.26.3055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the existence of Bridgeland stability conditions on the Kuznetsov components of Gushel-Mukai varieties, and describe the structure of moduli spaces of Bridgeland semistable objects in these categories in the even-dimensional case. As applications, we construct a new infinite series of unirational locally complete families of polarized hyperkahler varieties of K3 type, and characterize Hodge-theoretically when the Kuznetsov component of an even-dimensional Gushel-Mukai variety is equivalent to the derived category of a K3 surface.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.3055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.3055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们证明了Gushel-Mukai变元的Kuznetsov分量上存在Bridgeland稳定条件,并在偶维情况下描述了这些范畴中Bridgeland半稳定对象的模空间结构。作为应用,我们构造了K3型极化超kahler变种的一元局部完备族的无穷级数,并在理论上刻画了偶数维Gushel-Mukai变种的Kuznetsov分量等价于K3曲面的派生范畴时的hodge -。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability conditions and moduli spaces for Kuznetsov components of Gushel–Mukai varieties
We prove the existence of Bridgeland stability conditions on the Kuznetsov components of Gushel-Mukai varieties, and describe the structure of moduli spaces of Bridgeland semistable objects in these categories in the even-dimensional case. As applications, we construct a new infinite series of unirational locally complete families of polarized hyperkahler varieties of K3 type, and characterize Hodge-theoretically when the Kuznetsov component of an even-dimensional Gushel-Mukai variety is equivalent to the derived category of a K3 surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信