频繁项集挖掘的并行算法

Li Li, Dong-hai Zhai, F. Jin
{"title":"频繁项集挖掘的并行算法","authors":"Li Li, Dong-hai Zhai, F. Jin","doi":"10.1109/PDCAT.2003.1236435","DOIUrl":null,"url":null,"abstract":"Frequent itemsets mining plays an essential role in data mining. A new algorithm PFP-growth (parallel FP-growth), which is based on the improved FP-growth, is proposed for parallel frequent itemset mining. The new algorithm distributes the task fairly among the parallel processors. We devise partitioning strategies at different stages of the mining process to achieve balance between processors and adopt some data structure to reduce the information transportation between processors. The experiments on national high performance parallel computer show that the PFP-growth is an efficient parallel algorithm for mining frequent itemset.","PeriodicalId":145111,"journal":{"name":"Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A parallel algorithm for frequent itemset mining\",\"authors\":\"Li Li, Dong-hai Zhai, F. Jin\",\"doi\":\"10.1109/PDCAT.2003.1236435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequent itemsets mining plays an essential role in data mining. A new algorithm PFP-growth (parallel FP-growth), which is based on the improved FP-growth, is proposed for parallel frequent itemset mining. The new algorithm distributes the task fairly among the parallel processors. We devise partitioning strategies at different stages of the mining process to achieve balance between processors and adopt some data structure to reduce the information transportation between processors. The experiments on national high performance parallel computer show that the PFP-growth is an efficient parallel algorithm for mining frequent itemset.\",\"PeriodicalId\":145111,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2003.1236435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2003.1236435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

频繁项集挖掘在数据挖掘中起着至关重要的作用。在改进FP-growth算法的基础上,提出了一种新的并行频繁项集挖掘算法PFP-growth (parallel FP-growth)。新算法在并行处理器之间公平地分配任务。我们在挖掘过程的不同阶段设计分区策略来实现处理器之间的平衡,并采用一定的数据结构来减少处理器之间的信息传输。在国产高性能并行计算机上的实验表明,pfp增长算法是一种高效的挖掘频繁项集的并行算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parallel algorithm for frequent itemset mining
Frequent itemsets mining plays an essential role in data mining. A new algorithm PFP-growth (parallel FP-growth), which is based on the improved FP-growth, is proposed for parallel frequent itemset mining. The new algorithm distributes the task fairly among the parallel processors. We devise partitioning strategies at different stages of the mining process to achieve balance between processors and adopt some data structure to reduce the information transportation between processors. The experiments on national high performance parallel computer show that the PFP-growth is an efficient parallel algorithm for mining frequent itemset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信