PSS设计中的广义相位补偿

G. Wang, D. Gan, J. Liu, H. Xin, Z. Wang, C. Dai
{"title":"PSS设计中的广义相位补偿","authors":"G. Wang, D. Gan, J. Liu, H. Xin, Z. Wang, C. Dai","doi":"10.1109/APPEEC.2013.6837246","DOIUrl":null,"url":null,"abstract":"A simple eigenvalue representation result that justifies the celebrated phase compensation principle, from algebraic point of view, is presented. The result generalizes phase compensation principle, it appears as a stability criterion, applicable to multi-machine systems. It allows us to find compensation angle for machines individually. Furthermore, the problem of gain coordination is also reduced to a polynomial optimization problem with only several variables and constraints.","PeriodicalId":330524,"journal":{"name":"2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalized phase compensation for PSS design\",\"authors\":\"G. Wang, D. Gan, J. Liu, H. Xin, Z. Wang, C. Dai\",\"doi\":\"10.1109/APPEEC.2013.6837246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple eigenvalue representation result that justifies the celebrated phase compensation principle, from algebraic point of view, is presented. The result generalizes phase compensation principle, it appears as a stability criterion, applicable to multi-machine systems. It allows us to find compensation angle for machines individually. Furthermore, the problem of gain coordination is also reduced to a polynomial optimization problem with only several variables and constraints.\",\"PeriodicalId\":330524,\"journal\":{\"name\":\"2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2013.6837246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2013.6837246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从代数的角度,给出了一个简单的特征值表示结果,证明了著名的相位补偿原理。结果推广了相位补偿原理,作为一种稳定判据,适用于多机系统。它允许我们找到每个机器的补偿角。此外,增益协调问题也被简化为一个只有几个变量和约束的多项式优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized phase compensation for PSS design
A simple eigenvalue representation result that justifies the celebrated phase compensation principle, from algebraic point of view, is presented. The result generalizes phase compensation principle, it appears as a stability criterion, applicable to multi-machine systems. It allows us to find compensation angle for machines individually. Furthermore, the problem of gain coordination is also reduced to a polynomial optimization problem with only several variables and constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信