{"title":"L^q[0,2\\pi]度规上改进正则增长的整个函数的对数导数的渐近性质","authors":"R. Khats","doi":"10.31861/bmj2021.01.04","DOIUrl":null,"url":null,"abstract":"Let $f$ be an entire function with $f(0)=1$, $(\\lambda_n)_{n\\in\\mathbb N}$ be the sequence of its zeros, $n(t)=\\sum_{|\\lambda_n|\\le t}1$, $N(r)=\\int_0^r t^{-1}n(t)\\, dt$, $r>0$, $h(\\varphi)$ be the indicator of $f$, and $F(z)=zf'(z)/f(z)$, $z=re^{i\\varphi}$. An entire function $f$ is called a function of improved regular growth if for some $\\rho\\in (0,+\\infty)$ and $\\rho_1\\in (0,\\rho)$, and a $2\\pi$-periodic $\\rho$-trigonometrically convex function $h(\\varphi)\\not\\equiv -\\infty$ there exists a set $U\\subset\\mathbb C$ contained in the union of disks with finite sum of radii and such that\n\\begin{equation*}\n\\log |{f(z)}|=|z|^\\rho h(\\varphi)+o(|z|^{\\rho_1}),\\quad U\\not\\ni z=re^{i\\varphi}\\to\\infty.\n\\end{equation*}\nIn this paper, we prove that an entire function $f$ of order $\\rho\\in (0,+\\infty)$ with zeros on a finite system of rays $\\{z: \\arg z=\\psi_{j}\\}$, $j\\in\\{1,\\ldots,m\\}$, $0\\le\\psi_1<\\psi_2<\\ldots<\\psi_m<2\\pi$, is a function of improved regular growth if and only if for some $\\rho_3\\in (0,\\rho)$\n\\begin{equation*}\nN(r)=c_0r^\\rho+o(r^{\\rho_3}),\\quad r\\to +\\infty,\\quad c_0\\in [0,+\\infty),\n\\end{equation*}\nand for some $\\rho_2\\in (0,\\rho)$ and any $q\\in [1,+\\infty)$, one has\n\\begin{equation*}\n\\left\\{\\frac{1}{2\\pi}\\int_0^{2\\pi}\\left|\\frac{\\Im F(re^{i\\varphi})}{r^\\rho}+h'(\\varphi)\\right|^q\\, d\\varphi\\right\\}^{1/q}=o(r^{\\rho_2-\\rho}),\\quad r\\to +\\infty.\n\\end{equation*}","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ASYMPTOTIC BEHAVIOR OF THE LOGARITHMIC DERIVATIVE OF ENTIRE FUNCTION OF IMPROVED REGULAR GROWTH IN THE METRIC OF $L^q[0,2\\\\pi]$\",\"authors\":\"R. Khats\",\"doi\":\"10.31861/bmj2021.01.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $f$ be an entire function with $f(0)=1$, $(\\\\lambda_n)_{n\\\\in\\\\mathbb N}$ be the sequence of its zeros, $n(t)=\\\\sum_{|\\\\lambda_n|\\\\le t}1$, $N(r)=\\\\int_0^r t^{-1}n(t)\\\\, dt$, $r>0$, $h(\\\\varphi)$ be the indicator of $f$, and $F(z)=zf'(z)/f(z)$, $z=re^{i\\\\varphi}$. An entire function $f$ is called a function of improved regular growth if for some $\\\\rho\\\\in (0,+\\\\infty)$ and $\\\\rho_1\\\\in (0,\\\\rho)$, and a $2\\\\pi$-periodic $\\\\rho$-trigonometrically convex function $h(\\\\varphi)\\\\not\\\\equiv -\\\\infty$ there exists a set $U\\\\subset\\\\mathbb C$ contained in the union of disks with finite sum of radii and such that\\n\\\\begin{equation*}\\n\\\\log |{f(z)}|=|z|^\\\\rho h(\\\\varphi)+o(|z|^{\\\\rho_1}),\\\\quad U\\\\not\\\\ni z=re^{i\\\\varphi}\\\\to\\\\infty.\\n\\\\end{equation*}\\nIn this paper, we prove that an entire function $f$ of order $\\\\rho\\\\in (0,+\\\\infty)$ with zeros on a finite system of rays $\\\\{z: \\\\arg z=\\\\psi_{j}\\\\}$, $j\\\\in\\\\{1,\\\\ldots,m\\\\}$, $0\\\\le\\\\psi_1<\\\\psi_2<\\\\ldots<\\\\psi_m<2\\\\pi$, is a function of improved regular growth if and only if for some $\\\\rho_3\\\\in (0,\\\\rho)$\\n\\\\begin{equation*}\\nN(r)=c_0r^\\\\rho+o(r^{\\\\rho_3}),\\\\quad r\\\\to +\\\\infty,\\\\quad c_0\\\\in [0,+\\\\infty),\\n\\\\end{equation*}\\nand for some $\\\\rho_2\\\\in (0,\\\\rho)$ and any $q\\\\in [1,+\\\\infty)$, one has\\n\\\\begin{equation*}\\n\\\\left\\\\{\\\\frac{1}{2\\\\pi}\\\\int_0^{2\\\\pi}\\\\left|\\\\frac{\\\\Im F(re^{i\\\\varphi})}{r^\\\\rho}+h'(\\\\varphi)\\\\right|^q\\\\, d\\\\varphi\\\\right\\\\}^{1/q}=o(r^{\\\\rho_2-\\\\rho}),\\\\quad r\\\\to +\\\\infty.\\n\\\\end{equation*}\",\"PeriodicalId\":196726,\"journal\":{\"name\":\"Bukovinian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bukovinian Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31861/bmj2021.01.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2021.01.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ASYMPTOTIC BEHAVIOR OF THE LOGARITHMIC DERIVATIVE OF ENTIRE FUNCTION OF IMPROVED REGULAR GROWTH IN THE METRIC OF $L^q[0,2\pi]$
Let $f$ be an entire function with $f(0)=1$, $(\lambda_n)_{n\in\mathbb N}$ be the sequence of its zeros, $n(t)=\sum_{|\lambda_n|\le t}1$, $N(r)=\int_0^r t^{-1}n(t)\, dt$, $r>0$, $h(\varphi)$ be the indicator of $f$, and $F(z)=zf'(z)/f(z)$, $z=re^{i\varphi}$. An entire function $f$ is called a function of improved regular growth if for some $\rho\in (0,+\infty)$ and $\rho_1\in (0,\rho)$, and a $2\pi$-periodic $\rho$-trigonometrically convex function $h(\varphi)\not\equiv -\infty$ there exists a set $U\subset\mathbb C$ contained in the union of disks with finite sum of radii and such that
\begin{equation*}
\log |{f(z)}|=|z|^\rho h(\varphi)+o(|z|^{\rho_1}),\quad U\not\ni z=re^{i\varphi}\to\infty.
\end{equation*}
In this paper, we prove that an entire function $f$ of order $\rho\in (0,+\infty)$ with zeros on a finite system of rays $\{z: \arg z=\psi_{j}\}$, $j\in\{1,\ldots,m\}$, $0\le\psi_1<\psi_2<\ldots<\psi_m<2\pi$, is a function of improved regular growth if and only if for some $\rho_3\in (0,\rho)$
\begin{equation*}
N(r)=c_0r^\rho+o(r^{\rho_3}),\quad r\to +\infty,\quad c_0\in [0,+\infty),
\end{equation*}
and for some $\rho_2\in (0,\rho)$ and any $q\in [1,+\infty)$, one has
\begin{equation*}
\left\{\frac{1}{2\pi}\int_0^{2\pi}\left|\frac{\Im F(re^{i\varphi})}{r^\rho}+h'(\varphi)\right|^q\, d\varphi\right\}^{1/q}=o(r^{\rho_2-\rho}),\quad r\to +\infty.
\end{equation*}