多实例学习的金融应用:两个希腊案例研究

S. Kotsiantis, D. Kanellopoulos, V. Tampakas
{"title":"多实例学习的金融应用:两个希腊案例研究","authors":"S. Kotsiantis, D. Kanellopoulos, V. Tampakas","doi":"10.4156/JCIT.VOL5.ISSUE8.5","DOIUrl":null,"url":null,"abstract":"The problems of bankruptcy prediction and fraud detection have been extensively considered in the financial literature. The objective of this work is twofold. Firstly, we investigate the efficiency of multi-instance learning in bankruptcy prediction. For this reason, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 150 failed and solvent Greek firms in the recent period. It was found that multi-instance learning algorithms could enable experts to predict bankruptcies with satisfying accuracy. Secondly, we explore the effectiveness of multi-instance learning techniques in detecting firms that issue fraudulent financial statements (FFS). Therefore, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms. The results show that MIBoost algorithm with Decision Stump as base learner had the best accuracy in comparison with other multi-instance learners and single supervised machine learning techniques.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Financial Application of Multi-Instance Learning: Two Greek Case Studies\",\"authors\":\"S. Kotsiantis, D. Kanellopoulos, V. Tampakas\",\"doi\":\"10.4156/JCIT.VOL5.ISSUE8.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problems of bankruptcy prediction and fraud detection have been extensively considered in the financial literature. The objective of this work is twofold. Firstly, we investigate the efficiency of multi-instance learning in bankruptcy prediction. For this reason, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 150 failed and solvent Greek firms in the recent period. It was found that multi-instance learning algorithms could enable experts to predict bankruptcies with satisfying accuracy. Secondly, we explore the effectiveness of multi-instance learning techniques in detecting firms that issue fraudulent financial statements (FFS). Therefore, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms. The results show that MIBoost algorithm with Decision Stump as base learner had the best accuracy in comparison with other multi-instance learners and single supervised machine learning techniques.\",\"PeriodicalId\":360193,\"journal\":{\"name\":\"J. Convergence Inf. Technol.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Convergence Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

破产预测和欺诈检测问题在金融文献中得到了广泛的研究。这项工作的目的是双重的。首先,研究了多实例学习在破产预测中的有效性。出于这个原因,使用代表性学习算法进行了一些实验,这些算法是在最近一段时间内使用150家失败和有偿付能力的希腊公司的数据集进行训练的。研究发现,多实例学习算法能够使专家以令人满意的精度预测破产。其次,我们探讨了多实例学习技术在发现发布虚假财务报表(FFS)的公司方面的有效性。因此,使用代表性学习算法进行了许多实验,这些算法使用164家欺诈和非欺诈希腊公司的数据集进行了训练。结果表明,与其他多实例学习器和单监督机器学习技术相比,以Decision Stump为基础学习器的MIBoost算法具有最好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Financial Application of Multi-Instance Learning: Two Greek Case Studies
The problems of bankruptcy prediction and fraud detection have been extensively considered in the financial literature. The objective of this work is twofold. Firstly, we investigate the efficiency of multi-instance learning in bankruptcy prediction. For this reason, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 150 failed and solvent Greek firms in the recent period. It was found that multi-instance learning algorithms could enable experts to predict bankruptcies with satisfying accuracy. Secondly, we explore the effectiveness of multi-instance learning techniques in detecting firms that issue fraudulent financial statements (FFS). Therefore, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms. The results show that MIBoost algorithm with Decision Stump as base learner had the best accuracy in comparison with other multi-instance learners and single supervised machine learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信