RECAST:在动态网络中区分社会和随机关系

Pedro O. S. Vaz de Melo, A. C. Viana, M. Fiore, K. Jaffrès-Runser, Frédéric Le Mouël, A. Loureiro
{"title":"RECAST:在动态网络中区分社会和随机关系","authors":"Pedro O. S. Vaz de Melo, A. C. Viana, M. Fiore, K. Jaffrès-Runser, Frédéric Le Mouël, A. Loureiro","doi":"10.1145/2507924.2507950","DOIUrl":null,"url":null,"abstract":"In this paper, we argue that the ability to accurately spot random and social relationships in dynamic networks is essential to network applications that rely on human routines, such as, e.g., opportunistic routing. We thus propose a strategy to analyze users' interactions in mobile networks where users act according to their interests and activity dynamics. Our strategy, named Random rElationship ClASsifier sTrategy (RECAST), allows classifying users' wireless interactions, separating random interactions from different kinds of social ties. To that end, RECAST observes how the real system differs from an equivalent one where entities' decisions are completely random. We evaluate the effectiveness of the RECAST classification on real-world user contact datasets collected in diverse networking contexts. Our analysis unveils significant differences among the dynamics of users' wireless interactions in the datasets, which we leverage to unveil the impact of social ties on opportunistic routing.","PeriodicalId":445138,"journal":{"name":"Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"RECAST: telling apart social and random relationships in dynamic networks\",\"authors\":\"Pedro O. S. Vaz de Melo, A. C. Viana, M. Fiore, K. Jaffrès-Runser, Frédéric Le Mouël, A. Loureiro\",\"doi\":\"10.1145/2507924.2507950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we argue that the ability to accurately spot random and social relationships in dynamic networks is essential to network applications that rely on human routines, such as, e.g., opportunistic routing. We thus propose a strategy to analyze users' interactions in mobile networks where users act according to their interests and activity dynamics. Our strategy, named Random rElationship ClASsifier sTrategy (RECAST), allows classifying users' wireless interactions, separating random interactions from different kinds of social ties. To that end, RECAST observes how the real system differs from an equivalent one where entities' decisions are completely random. We evaluate the effectiveness of the RECAST classification on real-world user contact datasets collected in diverse networking contexts. Our analysis unveils significant differences among the dynamics of users' wireless interactions in the datasets, which we leverage to unveil the impact of social ties on opportunistic routing.\",\"PeriodicalId\":445138,\"journal\":{\"name\":\"Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2507924.2507950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2507924.2507950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

在本文中,我们认为,在动态网络中准确发现随机和社会关系的能力对于依赖于人类例程的网络应用程序至关重要,例如,机会路由。因此,我们提出了一种策略来分析用户在移动网络中的互动,在移动网络中,用户根据他们的兴趣和活动动态采取行动。我们的策略,称为随机关系分类器策略(RECAST),允许对用户的无线交互进行分类,将随机交互从不同类型的社会关系中分离出来。为此,RECAST观察了真实系统与实体决策完全随机的等效系统的不同之处。我们评估了RECAST分类在不同网络环境中收集的真实用户联系数据集上的有效性。我们的分析揭示了数据集中用户无线交互动态的显著差异,我们利用这些数据揭示了社会关系对机会路由的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RECAST: telling apart social and random relationships in dynamic networks
In this paper, we argue that the ability to accurately spot random and social relationships in dynamic networks is essential to network applications that rely on human routines, such as, e.g., opportunistic routing. We thus propose a strategy to analyze users' interactions in mobile networks where users act according to their interests and activity dynamics. Our strategy, named Random rElationship ClASsifier sTrategy (RECAST), allows classifying users' wireless interactions, separating random interactions from different kinds of social ties. To that end, RECAST observes how the real system differs from an equivalent one where entities' decisions are completely random. We evaluate the effectiveness of the RECAST classification on real-world user contact datasets collected in diverse networking contexts. Our analysis unveils significant differences among the dynamics of users' wireless interactions in the datasets, which we leverage to unveil the impact of social ties on opportunistic routing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信