具有非均匀预应力场的功能梯度材料双层板的稳定性损失

V. V. Eremeev
{"title":"具有非均匀预应力场的功能梯度材料双层板的稳定性损失","authors":"V. V. Eremeev","doi":"10.32326/1814-9146-2019-81-4-512-518","DOIUrl":null,"url":null,"abstract":"In the framework of three-dimensional nonlinear elasticity we consider linear instability of a composite plate made of functionally graded material and having initial stresses. The plae consists of two layers which were obtained as a result of flattening of an annual sector of an elastic cylinder. This deformation results in appearance of internal stresses. Thus, the plate becomes initially stressed. The initial stresses depend on the thickness coordinate, so we get inhomogeneous stress field. We have two types of inhomogeneities, the first is the inhomogeneity of the initial stresses whereas the second is the material inhomogeneity.We use the incompressible neo-Hookean material model as a constitutive relation. Despite of relatively simple form this model describes properly severe deformations of some rubber-like materials. For incompressible materials the flattening constitutes one of the so-called universal deformations, that is such deformation which is independent on the choice of constitutive relation. The material inhomogeneity is described through a dependence of the shear modulus on the thickness coordinate. Such inhomogeneity could be related to the manufacturing of the material or to further treatment. The stability was analysed using the linearization approach. We superimpose infinitesimal deformations on the finite initial one. The linearized boundary-value problem was derived and its nontrivial solutions were obtained. The solution was obtained in series of trigonometric functions. This helps to automatically satisfy a part of boundary conditions. We consider the influence of the inhomogeneity and initial stresses. We show that the initial stresses may significantly change critical deformations. For example, the loss of stability is possible due to initial stresses only.","PeriodicalId":340995,"journal":{"name":"Problems of strenght and plasticity","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE LOSS OF STABILITY OF A TWO-LAYERED PLATE MADE OF A FUNCTIONAL-GRADIENT MATERIAL WITH A NON-UNIFORM FIELD OF PRE-STRESSES\",\"authors\":\"V. V. Eremeev\",\"doi\":\"10.32326/1814-9146-2019-81-4-512-518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of three-dimensional nonlinear elasticity we consider linear instability of a composite plate made of functionally graded material and having initial stresses. The plae consists of two layers which were obtained as a result of flattening of an annual sector of an elastic cylinder. This deformation results in appearance of internal stresses. Thus, the plate becomes initially stressed. The initial stresses depend on the thickness coordinate, so we get inhomogeneous stress field. We have two types of inhomogeneities, the first is the inhomogeneity of the initial stresses whereas the second is the material inhomogeneity.We use the incompressible neo-Hookean material model as a constitutive relation. Despite of relatively simple form this model describes properly severe deformations of some rubber-like materials. For incompressible materials the flattening constitutes one of the so-called universal deformations, that is such deformation which is independent on the choice of constitutive relation. The material inhomogeneity is described through a dependence of the shear modulus on the thickness coordinate. Such inhomogeneity could be related to the manufacturing of the material or to further treatment. The stability was analysed using the linearization approach. We superimpose infinitesimal deformations on the finite initial one. The linearized boundary-value problem was derived and its nontrivial solutions were obtained. The solution was obtained in series of trigonometric functions. This helps to automatically satisfy a part of boundary conditions. We consider the influence of the inhomogeneity and initial stresses. We show that the initial stresses may significantly change critical deformations. For example, the loss of stability is possible due to initial stresses only.\",\"PeriodicalId\":340995,\"journal\":{\"name\":\"Problems of strenght and plasticity\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problems of strenght and plasticity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32326/1814-9146-2019-81-4-512-518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of strenght and plasticity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32326/1814-9146-2019-81-4-512-518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在三维非线性弹性的框架下,考虑具有初始应力的功能梯度材料复合板的线性失稳问题。该平面由两层组成,这两层是由弹性圆柱体的年度扇形平坦化而得到的。这种变形导致内应力的出现。因此,板开始受到应力。初始应力依赖于厚度坐标,因此得到非均匀应力场。我们有两种不均匀性,第一种是初始应力的不均匀性,第二种是材料的不均匀性。我们使用不可压缩的新胡克材料模型作为本构关系。尽管该模型的形式相对简单,但它能很好地描述某些类橡胶材料的严重变形。对于不可压缩材料,扁化构成了所谓的普遍变形之一,即这种变形与本构关系的选择无关。材料的不均匀性是通过剪切模量对厚度坐标的依赖来描述的。这种不均匀性可能与材料的制造或进一步处理有关。采用线性化方法分析了系统的稳定性。我们将无穷小的变形叠加在有限的初始变形上。导出了线性化边值问题,得到了该问题的非平凡解。通过一系列的三角函数得到了解。这有助于自动满足部分边界条件。我们考虑了非均匀性和初始应力的影响。我们表明,初始应力可能显著改变临界变形。例如,仅由于初始应力就可能失去稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE LOSS OF STABILITY OF A TWO-LAYERED PLATE MADE OF A FUNCTIONAL-GRADIENT MATERIAL WITH A NON-UNIFORM FIELD OF PRE-STRESSES
In the framework of three-dimensional nonlinear elasticity we consider linear instability of a composite plate made of functionally graded material and having initial stresses. The plae consists of two layers which were obtained as a result of flattening of an annual sector of an elastic cylinder. This deformation results in appearance of internal stresses. Thus, the plate becomes initially stressed. The initial stresses depend on the thickness coordinate, so we get inhomogeneous stress field. We have two types of inhomogeneities, the first is the inhomogeneity of the initial stresses whereas the second is the material inhomogeneity.We use the incompressible neo-Hookean material model as a constitutive relation. Despite of relatively simple form this model describes properly severe deformations of some rubber-like materials. For incompressible materials the flattening constitutes one of the so-called universal deformations, that is such deformation which is independent on the choice of constitutive relation. The material inhomogeneity is described through a dependence of the shear modulus on the thickness coordinate. Such inhomogeneity could be related to the manufacturing of the material or to further treatment. The stability was analysed using the linearization approach. We superimpose infinitesimal deformations on the finite initial one. The linearized boundary-value problem was derived and its nontrivial solutions were obtained. The solution was obtained in series of trigonometric functions. This helps to automatically satisfy a part of boundary conditions. We consider the influence of the inhomogeneity and initial stresses. We show that the initial stresses may significantly change critical deformations. For example, the loss of stability is possible due to initial stresses only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信