{"title":"基于多渠道用户反馈的贝叶斯个性化排名","authors":"B. Loni, Roberto Pagano, M. Larson, A. Hanjalic","doi":"10.1145/2959100.2959163","DOIUrl":null,"url":null,"abstract":"Pairwise learning-to-rank algorithms have been shown to allow recommender systems to leverage unary user feedback. We propose Multi-feedback Bayesian Personalized Ranking (MF-BPR), a pairwise method that exploits different types of feedback with an extended sampling method. The feedback types are drawn from different \"channels\", in which users interact with items (e.g., clicks, likes, listens, follows, and purchases). We build on the insight that different kinds of feedback, e.g., a click versus a like, reflect different levels of commitment or preference. Our approach differs from previous work in that it exploits multiple sources of feedback simultaneously during the training process. The novelty of MF-BPR is an extended sampling method that equates feedback sources with \"levels\" that reflect the expected contribution of the signal. We demonstrate the effectiveness of our approach with a series of experiments carried out on three datasets containing multiple types of feedback. Our experimental results demonstrate that with a right sampling method, MF-BPR outperforms BPR in terms of accuracy. We find that the advantage of MF-BPR lies in its ability to leverage level information when sampling negative items.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":"{\"title\":\"Bayesian Personalized Ranking with Multi-Channel User Feedback\",\"authors\":\"B. Loni, Roberto Pagano, M. Larson, A. Hanjalic\",\"doi\":\"10.1145/2959100.2959163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pairwise learning-to-rank algorithms have been shown to allow recommender systems to leverage unary user feedback. We propose Multi-feedback Bayesian Personalized Ranking (MF-BPR), a pairwise method that exploits different types of feedback with an extended sampling method. The feedback types are drawn from different \\\"channels\\\", in which users interact with items (e.g., clicks, likes, listens, follows, and purchases). We build on the insight that different kinds of feedback, e.g., a click versus a like, reflect different levels of commitment or preference. Our approach differs from previous work in that it exploits multiple sources of feedback simultaneously during the training process. The novelty of MF-BPR is an extended sampling method that equates feedback sources with \\\"levels\\\" that reflect the expected contribution of the signal. We demonstrate the effectiveness of our approach with a series of experiments carried out on three datasets containing multiple types of feedback. Our experimental results demonstrate that with a right sampling method, MF-BPR outperforms BPR in terms of accuracy. We find that the advantage of MF-BPR lies in its ability to leverage level information when sampling negative items.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian Personalized Ranking with Multi-Channel User Feedback
Pairwise learning-to-rank algorithms have been shown to allow recommender systems to leverage unary user feedback. We propose Multi-feedback Bayesian Personalized Ranking (MF-BPR), a pairwise method that exploits different types of feedback with an extended sampling method. The feedback types are drawn from different "channels", in which users interact with items (e.g., clicks, likes, listens, follows, and purchases). We build on the insight that different kinds of feedback, e.g., a click versus a like, reflect different levels of commitment or preference. Our approach differs from previous work in that it exploits multiple sources of feedback simultaneously during the training process. The novelty of MF-BPR is an extended sampling method that equates feedback sources with "levels" that reflect the expected contribution of the signal. We demonstrate the effectiveness of our approach with a series of experiments carried out on three datasets containing multiple types of feedback. Our experimental results demonstrate that with a right sampling method, MF-BPR outperforms BPR in terms of accuracy. We find that the advantage of MF-BPR lies in its ability to leverage level information when sampling negative items.