Android恶意软件检测使用卷积神经网络和数据切片图像

Jaemin Jung, Jongmoo Choi, Seong-je Cho, Sangchul Han, Minkyu Park, Young-Sup Hwang
{"title":"Android恶意软件检测使用卷积神经网络和数据切片图像","authors":"Jaemin Jung, Jongmoo Choi, Seong-je Cho, Sangchul Han, Minkyu Park, Young-Sup Hwang","doi":"10.1145/3264746.3264780","DOIUrl":null,"url":null,"abstract":"The paper proposes a new technique to detect Android malware effectively based on converting malware binaries into images and applying machine learning techniques on those images. Existing research converts the whole executable files (e.g., DEX files in Android application package) of target apps into images and uses them for machine learning. However, the entire DEX file (consisting of header section, identifier section, data section, optional link data area, etc.) might contain noisy information for malware detection. In this paper, we convert only data sections of DEX files into grayscale images and apply machine learning on the images with Convolutional Neural Networks (CNN). By using only the data sections for 5,377 malicious and 6,249 benign apps, our technique reduces the storage capacity by 17.5% on average compared to using the whole DEX files. We apply two CNN models, Inception-v3 and Inception-ResNet-v2, which are known to be efficient in image processing, and examine the effectiveness of our technique in terms of accuracy. Experiment results show that the proposed technique achieves better accuracy with smaller storage capacity than the approach using the whole DEX files. Inception-ResNet-v2 with the stochastic gradient descent (SGD) optimization algorithm reaches 98.02% accuracy.","PeriodicalId":186790,"journal":{"name":"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Android malware detection using convolutional neural networks and data section images\",\"authors\":\"Jaemin Jung, Jongmoo Choi, Seong-je Cho, Sangchul Han, Minkyu Park, Young-Sup Hwang\",\"doi\":\"10.1145/3264746.3264780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a new technique to detect Android malware effectively based on converting malware binaries into images and applying machine learning techniques on those images. Existing research converts the whole executable files (e.g., DEX files in Android application package) of target apps into images and uses them for machine learning. However, the entire DEX file (consisting of header section, identifier section, data section, optional link data area, etc.) might contain noisy information for malware detection. In this paper, we convert only data sections of DEX files into grayscale images and apply machine learning on the images with Convolutional Neural Networks (CNN). By using only the data sections for 5,377 malicious and 6,249 benign apps, our technique reduces the storage capacity by 17.5% on average compared to using the whole DEX files. We apply two CNN models, Inception-v3 and Inception-ResNet-v2, which are known to be efficient in image processing, and examine the effectiveness of our technique in terms of accuracy. Experiment results show that the proposed technique achieves better accuracy with smaller storage capacity than the approach using the whole DEX files. Inception-ResNet-v2 with the stochastic gradient descent (SGD) optimization algorithm reaches 98.02% accuracy.\",\"PeriodicalId\":186790,\"journal\":{\"name\":\"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3264746.3264780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3264746.3264780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文提出了一种基于将恶意软件二进制文件转换为图像并对图像应用机器学习技术的Android恶意软件检测新技术。现有研究将目标应用程序的整个可执行文件(如Android应用程序包中的DEX文件)转换为图像并用于机器学习。但是,整个DEX文件(包括头段、标识符段、数据段、可选链接数据区等)可能包含恶意软件检测所需的噪声信息。在本文中,我们仅将DEX文件的数据部分转换为灰度图像,并使用卷积神经网络(CNN)对图像应用机器学习。通过仅使用5377个恶意应用程序和6249个良性应用程序的数据部分,与使用整个DEX文件相比,我们的技术平均减少了17.5%的存储容量。我们应用了两个CNN模型,Inception-v3和Inception-ResNet-v2,这两个模型在图像处理方面是有效的,并从准确性方面检验了我们技术的有效性。实验结果表明,与使用整个DEX文件的方法相比,该方法在更小的存储容量下获得了更高的精度。Inception-ResNet-v2采用随机梯度下降(SGD)优化算法,准确率达到98.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Android malware detection using convolutional neural networks and data section images
The paper proposes a new technique to detect Android malware effectively based on converting malware binaries into images and applying machine learning techniques on those images. Existing research converts the whole executable files (e.g., DEX files in Android application package) of target apps into images and uses them for machine learning. However, the entire DEX file (consisting of header section, identifier section, data section, optional link data area, etc.) might contain noisy information for malware detection. In this paper, we convert only data sections of DEX files into grayscale images and apply machine learning on the images with Convolutional Neural Networks (CNN). By using only the data sections for 5,377 malicious and 6,249 benign apps, our technique reduces the storage capacity by 17.5% on average compared to using the whole DEX files. We apply two CNN models, Inception-v3 and Inception-ResNet-v2, which are known to be efficient in image processing, and examine the effectiveness of our technique in terms of accuracy. Experiment results show that the proposed technique achieves better accuracy with smaller storage capacity than the approach using the whole DEX files. Inception-ResNet-v2 with the stochastic gradient descent (SGD) optimization algorithm reaches 98.02% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信