基于注意感知的小波检测变形人脸图像

Poorya Aghdaie, Baaria Chaudhary, Sobhan Soleymani, J. Dawson, N. Nasrabadi
{"title":"基于注意感知的小波检测变形人脸图像","authors":"Poorya Aghdaie, Baaria Chaudhary, Sobhan Soleymani, J. Dawson, N. Nasrabadi","doi":"10.1109/IJCB52358.2021.9484398","DOIUrl":null,"url":null,"abstract":"Morphed images have exploited loopholes in the face recognition checkpoints, e.g., Credential Authentication Technology (CAT), used by Transportation Security Administration (TSA), which is a non-trivial security concern. To overcome the risks incurred due to morphed presentations, we propose a wavelet-based morph detection methodology which adopts an end-to-end trainable soft attention mechanism. Our attention-based deep neural network (DNN) focuses on the salient Regions of Interest (ROI) which have the most spatial support for morph detector decision function, i.e, morph class binary softmax output. A retrospective of morph synthesizing procedure aids us to speculate the ROI as regions around facial landmarks, particularly for the case of landmark-based morphing techniques. Moreover, our attention-based DNN is adapted to the wavelet space, where inputs of the network are coarse-to-fine spectral representations, 48 stacked wavelet sub-bands to be exact. We evaluate performance of the proposed framework using three datasets, VISAPP17, LMA, and MorGAN. In addition, as attention maps can be a robust indicator whether a probe image under investigation is genuine or counterfeit, we analyze the estimated attention maps for both a bona fide image and its corresponding morphed image. Finally, we present an ablation study on the efficacy of utilizing attention mechanism for the sake of morph detection.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Attention Aware Wavelet-based Detection of Morphed Face Images\",\"authors\":\"Poorya Aghdaie, Baaria Chaudhary, Sobhan Soleymani, J. Dawson, N. Nasrabadi\",\"doi\":\"10.1109/IJCB52358.2021.9484398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Morphed images have exploited loopholes in the face recognition checkpoints, e.g., Credential Authentication Technology (CAT), used by Transportation Security Administration (TSA), which is a non-trivial security concern. To overcome the risks incurred due to morphed presentations, we propose a wavelet-based morph detection methodology which adopts an end-to-end trainable soft attention mechanism. Our attention-based deep neural network (DNN) focuses on the salient Regions of Interest (ROI) which have the most spatial support for morph detector decision function, i.e, morph class binary softmax output. A retrospective of morph synthesizing procedure aids us to speculate the ROI as regions around facial landmarks, particularly for the case of landmark-based morphing techniques. Moreover, our attention-based DNN is adapted to the wavelet space, where inputs of the network are coarse-to-fine spectral representations, 48 stacked wavelet sub-bands to be exact. We evaluate performance of the proposed framework using three datasets, VISAPP17, LMA, and MorGAN. In addition, as attention maps can be a robust indicator whether a probe image under investigation is genuine or counterfeit, we analyze the estimated attention maps for both a bona fide image and its corresponding morphed image. Finally, we present an ablation study on the efficacy of utilizing attention mechanism for the sake of morph detection.\",\"PeriodicalId\":175984,\"journal\":{\"name\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB52358.2021.9484398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

变形图像利用了人脸识别检查点的漏洞,例如运输安全管理局(TSA)使用的凭据认证技术(CAT),这是一个重要的安全问题。为了克服变形呈现带来的风险,我们提出了一种基于小波的形态检测方法,该方法采用端到端可训练的软注意机制。我们的基于注意力的深度神经网络(DNN)专注于对形态检测器决策函数具有最大空间支持的显著感兴趣区域(ROI),即形态类二进制softmax输出。形态合成过程的回顾有助于我们推测ROI作为面部地标周围的区域,特别是对于基于地标的变形技术的情况。此外,我们基于注意力的深度神经网络适应于小波空间,其中网络的输入是粗到细的频谱表示,准确地说是48个堆叠的小波子带。我们使用VISAPP17、LMA和MorGAN三个数据集来评估所提出框架的性能。此外,由于注意图可以作为被调查的探测图像是真假的可靠指标,我们分析了真实图像及其相应变形图像的估计注意图。最后,我们对利用注意机制进行形态学检测的有效性进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention Aware Wavelet-based Detection of Morphed Face Images
Morphed images have exploited loopholes in the face recognition checkpoints, e.g., Credential Authentication Technology (CAT), used by Transportation Security Administration (TSA), which is a non-trivial security concern. To overcome the risks incurred due to morphed presentations, we propose a wavelet-based morph detection methodology which adopts an end-to-end trainable soft attention mechanism. Our attention-based deep neural network (DNN) focuses on the salient Regions of Interest (ROI) which have the most spatial support for morph detector decision function, i.e, morph class binary softmax output. A retrospective of morph synthesizing procedure aids us to speculate the ROI as regions around facial landmarks, particularly for the case of landmark-based morphing techniques. Moreover, our attention-based DNN is adapted to the wavelet space, where inputs of the network are coarse-to-fine spectral representations, 48 stacked wavelet sub-bands to be exact. We evaluate performance of the proposed framework using three datasets, VISAPP17, LMA, and MorGAN. In addition, as attention maps can be a robust indicator whether a probe image under investigation is genuine or counterfeit, we analyze the estimated attention maps for both a bona fide image and its corresponding morphed image. Finally, we present an ablation study on the efficacy of utilizing attention mechanism for the sake of morph detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信