Poorya Aghdaie, Baaria Chaudhary, Sobhan Soleymani, J. Dawson, N. Nasrabadi
{"title":"基于注意感知的小波检测变形人脸图像","authors":"Poorya Aghdaie, Baaria Chaudhary, Sobhan Soleymani, J. Dawson, N. Nasrabadi","doi":"10.1109/IJCB52358.2021.9484398","DOIUrl":null,"url":null,"abstract":"Morphed images have exploited loopholes in the face recognition checkpoints, e.g., Credential Authentication Technology (CAT), used by Transportation Security Administration (TSA), which is a non-trivial security concern. To overcome the risks incurred due to morphed presentations, we propose a wavelet-based morph detection methodology which adopts an end-to-end trainable soft attention mechanism. Our attention-based deep neural network (DNN) focuses on the salient Regions of Interest (ROI) which have the most spatial support for morph detector decision function, i.e, morph class binary softmax output. A retrospective of morph synthesizing procedure aids us to speculate the ROI as regions around facial landmarks, particularly for the case of landmark-based morphing techniques. Moreover, our attention-based DNN is adapted to the wavelet space, where inputs of the network are coarse-to-fine spectral representations, 48 stacked wavelet sub-bands to be exact. We evaluate performance of the proposed framework using three datasets, VISAPP17, LMA, and MorGAN. In addition, as attention maps can be a robust indicator whether a probe image under investigation is genuine or counterfeit, we analyze the estimated attention maps for both a bona fide image and its corresponding morphed image. Finally, we present an ablation study on the efficacy of utilizing attention mechanism for the sake of morph detection.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Attention Aware Wavelet-based Detection of Morphed Face Images\",\"authors\":\"Poorya Aghdaie, Baaria Chaudhary, Sobhan Soleymani, J. Dawson, N. Nasrabadi\",\"doi\":\"10.1109/IJCB52358.2021.9484398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Morphed images have exploited loopholes in the face recognition checkpoints, e.g., Credential Authentication Technology (CAT), used by Transportation Security Administration (TSA), which is a non-trivial security concern. To overcome the risks incurred due to morphed presentations, we propose a wavelet-based morph detection methodology which adopts an end-to-end trainable soft attention mechanism. Our attention-based deep neural network (DNN) focuses on the salient Regions of Interest (ROI) which have the most spatial support for morph detector decision function, i.e, morph class binary softmax output. A retrospective of morph synthesizing procedure aids us to speculate the ROI as regions around facial landmarks, particularly for the case of landmark-based morphing techniques. Moreover, our attention-based DNN is adapted to the wavelet space, where inputs of the network are coarse-to-fine spectral representations, 48 stacked wavelet sub-bands to be exact. We evaluate performance of the proposed framework using three datasets, VISAPP17, LMA, and MorGAN. In addition, as attention maps can be a robust indicator whether a probe image under investigation is genuine or counterfeit, we analyze the estimated attention maps for both a bona fide image and its corresponding morphed image. Finally, we present an ablation study on the efficacy of utilizing attention mechanism for the sake of morph detection.\",\"PeriodicalId\":175984,\"journal\":{\"name\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB52358.2021.9484398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Attention Aware Wavelet-based Detection of Morphed Face Images
Morphed images have exploited loopholes in the face recognition checkpoints, e.g., Credential Authentication Technology (CAT), used by Transportation Security Administration (TSA), which is a non-trivial security concern. To overcome the risks incurred due to morphed presentations, we propose a wavelet-based morph detection methodology which adopts an end-to-end trainable soft attention mechanism. Our attention-based deep neural network (DNN) focuses on the salient Regions of Interest (ROI) which have the most spatial support for morph detector decision function, i.e, morph class binary softmax output. A retrospective of morph synthesizing procedure aids us to speculate the ROI as regions around facial landmarks, particularly for the case of landmark-based morphing techniques. Moreover, our attention-based DNN is adapted to the wavelet space, where inputs of the network are coarse-to-fine spectral representations, 48 stacked wavelet sub-bands to be exact. We evaluate performance of the proposed framework using three datasets, VISAPP17, LMA, and MorGAN. In addition, as attention maps can be a robust indicator whether a probe image under investigation is genuine or counterfeit, we analyze the estimated attention maps for both a bona fide image and its corresponding morphed image. Finally, we present an ablation study on the efficacy of utilizing attention mechanism for the sake of morph detection.