M. Cole, B. Nelson, P. Fogarty, G. Jones, P. Goranson, Y. Gohar, S. Liew
{"title":"托卡马克物理实验(TPX)托卡马克辐射屏蔽装置的概念设计","authors":"M. Cole, B. Nelson, P. Fogarty, G. Jones, P. Goranson, Y. Gohar, S. Liew","doi":"10.1109/FUSION.1993.518431","DOIUrl":null,"url":null,"abstract":"The tokamak radiation shielding includes the neutron and gamma shielding around the torus and penetrations required to (1) limit activation of components outside the shield to levels that permit hands-on maintenance and (2) limit the nuclear heating of the superconducting coils and cold structure. The primary design drivers are space, the 350/spl deg/C bakeout temperature, and cost; therefore, different shield materials were used for different shield components and locations. The shielding is divided into three areas: (1) torus shielding around the vacuum vessel, (2) duct shielding around the vacuum pumping ducts and vertical diagnostic ducts, and (3) penetration shielding in and around the radial ports. The major shield components include water between the walls of the vacuum vessel, lead monosilicate/boron carbide tiles that are attached to the exterior of the vacuum vessel, shield plugs that fill the openings of the large radial ports, and polyethylene/lead/boron shield blocks for duct shielding. A description of the shielding configuration and the performance and operational requirements will be discussed.","PeriodicalId":365814,"journal":{"name":"15th IEEE/NPSS Symposium. Fusion Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conceptual design of the tokamak radiation shielding for the Tokamak Physics Experiment (TPX)\",\"authors\":\"M. Cole, B. Nelson, P. Fogarty, G. Jones, P. Goranson, Y. Gohar, S. Liew\",\"doi\":\"10.1109/FUSION.1993.518431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tokamak radiation shielding includes the neutron and gamma shielding around the torus and penetrations required to (1) limit activation of components outside the shield to levels that permit hands-on maintenance and (2) limit the nuclear heating of the superconducting coils and cold structure. The primary design drivers are space, the 350/spl deg/C bakeout temperature, and cost; therefore, different shield materials were used for different shield components and locations. The shielding is divided into three areas: (1) torus shielding around the vacuum vessel, (2) duct shielding around the vacuum pumping ducts and vertical diagnostic ducts, and (3) penetration shielding in and around the radial ports. The major shield components include water between the walls of the vacuum vessel, lead monosilicate/boron carbide tiles that are attached to the exterior of the vacuum vessel, shield plugs that fill the openings of the large radial ports, and polyethylene/lead/boron shield blocks for duct shielding. A description of the shielding configuration and the performance and operational requirements will be discussed.\",\"PeriodicalId\":365814,\"journal\":{\"name\":\"15th IEEE/NPSS Symposium. Fusion Engineering\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th IEEE/NPSS Symposium. Fusion Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUSION.1993.518431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th IEEE/NPSS Symposium. Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.1993.518431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conceptual design of the tokamak radiation shielding for the Tokamak Physics Experiment (TPX)
The tokamak radiation shielding includes the neutron and gamma shielding around the torus and penetrations required to (1) limit activation of components outside the shield to levels that permit hands-on maintenance and (2) limit the nuclear heating of the superconducting coils and cold structure. The primary design drivers are space, the 350/spl deg/C bakeout temperature, and cost; therefore, different shield materials were used for different shield components and locations. The shielding is divided into three areas: (1) torus shielding around the vacuum vessel, (2) duct shielding around the vacuum pumping ducts and vertical diagnostic ducts, and (3) penetration shielding in and around the radial ports. The major shield components include water between the walls of the vacuum vessel, lead monosilicate/boron carbide tiles that are attached to the exterior of the vacuum vessel, shield plugs that fill the openings of the large radial ports, and polyethylene/lead/boron shield blocks for duct shielding. A description of the shielding configuration and the performance and operational requirements will be discussed.