太阳能多机器人系统的多准则任务规划

Di Wang, Mengqi Hu, Yang Gao
{"title":"太阳能多机器人系统的多准则任务规划","authors":"Di Wang, Mengqi Hu, Yang Gao","doi":"10.1115/DETC2018-85683","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed a tremendous growth of interest in multi-robot system which can execute more complex tasks compared to single robot. To improve the operational life of multi-robot system and address challenges in long-duration mission, the solar-powered multi-robot system has been demonstrated to be an effective solution. To ensure efficient operation of solar-powered multi-robot system, we propose a multi-criteria mixed integer programming model for multi-robot mission planning to minimize three objectives including traveling distance, traveling time, and net energy consumption. Our proposed model is an extension of multiple vehicle routing problem considering time window, flexible speed, and energy sharing where a set of flexible speeds are proposed to explore the influence of robot’s velocity on energy consumption and solar energy harvesting. Three sets of case studies are designed to investigate the tradeoffs among the three objectives. The results demonstrate that heterogeneous multi-robot system: 1) can more efficiently utilize solar energy and 2) need a multi-criteria model to balance the three objectives.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multi-Criteria Mission Planning for a Solar-Powered Multi-Robot System\",\"authors\":\"Di Wang, Mengqi Hu, Yang Gao\",\"doi\":\"10.1115/DETC2018-85683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have witnessed a tremendous growth of interest in multi-robot system which can execute more complex tasks compared to single robot. To improve the operational life of multi-robot system and address challenges in long-duration mission, the solar-powered multi-robot system has been demonstrated to be an effective solution. To ensure efficient operation of solar-powered multi-robot system, we propose a multi-criteria mixed integer programming model for multi-robot mission planning to minimize three objectives including traveling distance, traveling time, and net energy consumption. Our proposed model is an extension of multiple vehicle routing problem considering time window, flexible speed, and energy sharing where a set of flexible speeds are proposed to explore the influence of robot’s velocity on energy consumption and solar energy harvesting. Three sets of case studies are designed to investigate the tradeoffs among the three objectives. The results demonstrate that heterogeneous multi-robot system: 1) can more efficiently utilize solar energy and 2) need a multi-criteria model to balance the three objectives.\",\"PeriodicalId\":138856,\"journal\":{\"name\":\"Volume 2A: 44th Design Automation Conference\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 44th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-85683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

近年来,人们对多机器人系统产生了极大的兴趣,因为它可以执行比单个机器人更复杂的任务。为了提高多机器人系统的使用寿命和应对长时间任务的挑战,太阳能多机器人系统已被证明是一种有效的解决方案。为了保证太阳能多机器人系统的高效运行,提出了一种多准则混合整数规划模型用于多机器人任务规划,以最小化行走距离、行走时间和净能耗三个目标。该模型是考虑时间窗、柔性速度和能量共享的多车路径问题的扩展,提出了一组柔性速度来探讨机器人速度对能量消耗和太阳能收集的影响。设计了三组案例研究来调查这三个目标之间的权衡。结果表明,异构多机器人系统:1)可以更有效地利用太阳能;2)需要一个多准则模型来平衡这三个目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Criteria Mission Planning for a Solar-Powered Multi-Robot System
Recent years have witnessed a tremendous growth of interest in multi-robot system which can execute more complex tasks compared to single robot. To improve the operational life of multi-robot system and address challenges in long-duration mission, the solar-powered multi-robot system has been demonstrated to be an effective solution. To ensure efficient operation of solar-powered multi-robot system, we propose a multi-criteria mixed integer programming model for multi-robot mission planning to minimize three objectives including traveling distance, traveling time, and net energy consumption. Our proposed model is an extension of multiple vehicle routing problem considering time window, flexible speed, and energy sharing where a set of flexible speeds are proposed to explore the influence of robot’s velocity on energy consumption and solar energy harvesting. Three sets of case studies are designed to investigate the tradeoffs among the three objectives. The results demonstrate that heterogeneous multi-robot system: 1) can more efficiently utilize solar energy and 2) need a multi-criteria model to balance the three objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信