使用蒙特卡罗树搜索生成类人自然语言

K. Kumagai, I. Kobayashi, D. Mochihashi, H. Asoh, Tomoaki Nakamura, T. Nagai
{"title":"使用蒙特卡罗树搜索生成类人自然语言","authors":"K. Kumagai, I. Kobayashi, D. Mochihashi, H. Asoh, Tomoaki Nakamura, T. Nagai","doi":"10.18653/v1/W16-5502","DOIUrl":null,"url":null,"abstract":"We propose a method of probabilistic natural language generation observing both a syntactic structure and an input of situational content. We employed Monte Carlo Tree Search for this nontrivial search problem, employing context-free grammar rules as search operators and evaluating numerous putative generations from these two aspects using logistic regression and n -gram language model. Through several experiments, we confirmed that our method can effectively generate sentences with various words and phrasings.","PeriodicalId":415027,"journal":{"name":"Workshop on Computational Creativity in Natural Language Generation","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Human-like Natural Language Generation Using Monte Carlo Tree Search\",\"authors\":\"K. Kumagai, I. Kobayashi, D. Mochihashi, H. Asoh, Tomoaki Nakamura, T. Nagai\",\"doi\":\"10.18653/v1/W16-5502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method of probabilistic natural language generation observing both a syntactic structure and an input of situational content. We employed Monte Carlo Tree Search for this nontrivial search problem, employing context-free grammar rules as search operators and evaluating numerous putative generations from these two aspects using logistic regression and n -gram language model. Through several experiments, we confirmed that our method can effectively generate sentences with various words and phrasings.\",\"PeriodicalId\":415027,\"journal\":{\"name\":\"Workshop on Computational Creativity in Natural Language Generation\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Computational Creativity in Natural Language Generation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W16-5502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Computational Creativity in Natural Language Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-5502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们提出了一种同时观察句法结构和情景内容输入的概率自然语言生成方法。我们使用蒙特卡罗树搜索来解决这个非平凡搜索问题,使用上下文无关的语法规则作为搜索操作符,并使用逻辑回归和n -gram语言模型从这两个方面评估许多假定的代。通过多次实验,我们证实了我们的方法可以有效地生成包含各种单词和短语的句子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human-like Natural Language Generation Using Monte Carlo Tree Search
We propose a method of probabilistic natural language generation observing both a syntactic structure and an input of situational content. We employed Monte Carlo Tree Search for this nontrivial search problem, employing context-free grammar rules as search operators and evaluating numerous putative generations from these two aspects using logistic regression and n -gram language model. Through several experiments, we confirmed that our method can effectively generate sentences with various words and phrasings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信