基于性能相关粒子群的直流电机PID控制器优化

H. Verma, M. C. Jain
{"title":"基于性能相关粒子群的直流电机PID控制器优化","authors":"H. Verma, M. C. Jain","doi":"10.1109/ICEES.2011.5725327","DOIUrl":null,"url":null,"abstract":"This paper proposed a new approach to control speed of linear brushless DC motor. This paper provides an overview of performance dependant particle swarm optimization (PDPSO) and presenting it as an alternative to evolutionary algorithm. Performance Dependent Particle swarm optimization is used to determine optimal gains of proportional-derivative-integral controller (PID). To obtain optimal solutions, PDPSO introduced the relationship between particle selection and particles performance. The proposed method shows its robustness under critical conditions when conventional optimization methods fail.","PeriodicalId":156837,"journal":{"name":"2011 1st International Conference on Electrical Energy Systems","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A performance-dependent PSO based optimization of PID controller for DC motor\",\"authors\":\"H. Verma, M. C. Jain\",\"doi\":\"10.1109/ICEES.2011.5725327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a new approach to control speed of linear brushless DC motor. This paper provides an overview of performance dependant particle swarm optimization (PDPSO) and presenting it as an alternative to evolutionary algorithm. Performance Dependent Particle swarm optimization is used to determine optimal gains of proportional-derivative-integral controller (PID). To obtain optimal solutions, PDPSO introduced the relationship between particle selection and particles performance. The proposed method shows its robustness under critical conditions when conventional optimization methods fail.\",\"PeriodicalId\":156837,\"journal\":{\"name\":\"2011 1st International Conference on Electrical Energy Systems\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 1st International Conference on Electrical Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEES.2011.5725327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 1st International Conference on Electrical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEES.2011.5725327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种控制直线无刷直流电动机转速的新方法。本文概述了性能相关粒子群优化(PDPSO),并将其作为一种替代进化算法。采用性能相关粒子群算法确定比例导数积分控制器(PID)的最优增益。为了得到最优解,PDPSO引入了粒子选择与粒子性能之间的关系。该方法在常规优化方法失效的关键条件下具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A performance-dependent PSO based optimization of PID controller for DC motor
This paper proposed a new approach to control speed of linear brushless DC motor. This paper provides an overview of performance dependant particle swarm optimization (PDPSO) and presenting it as an alternative to evolutionary algorithm. Performance Dependent Particle swarm optimization is used to determine optimal gains of proportional-derivative-integral controller (PID). To obtain optimal solutions, PDPSO introduced the relationship between particle selection and particles performance. The proposed method shows its robustness under critical conditions when conventional optimization methods fail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信