交叉引导聚类:跨域的相关监督转移以改进聚类

Indrajit Bhattacharya, S. Godbole, Sachindra Joshi, Ashish Verma
{"title":"交叉引导聚类:跨域的相关监督转移以改进聚类","authors":"Indrajit Bhattacharya, S. Godbole, Sachindra Joshi, Ashish Verma","doi":"10.1109/ICDM.2009.33","DOIUrl":null,"url":null,"abstract":"Lack of supervision in clustering algorithms often leads to clusters that are not useful or interesting to human reviewers. We investigate if supervision can be automatically transferred to a clustering task in a target domain, by providing a relevant supervised partitioning of a dataset from a different source domain. The target clustering is made more meaningful for the human user by trading off intrinsic clustering goodness on the target dataset for alignment with relevant supervised partitions in the source dataset, wherever possible. We propose a cross-guided clustering algorithm that builds on traditional k-means by aligning the target clusters with source partitions. The alignment process makes use of a cross-domain similarity measure that discovers hidden relationships across domains with potentially different vocabularies. Using multiple real-world datasets, we show that our approach improves clustering accuracy significantly over traditional k-means.","PeriodicalId":247645,"journal":{"name":"2009 Ninth IEEE International Conference on Data Mining","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Cross-Guided Clustering: Transfer of Relevant Supervision across Domains for Improved Clustering\",\"authors\":\"Indrajit Bhattacharya, S. Godbole, Sachindra Joshi, Ashish Verma\",\"doi\":\"10.1109/ICDM.2009.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lack of supervision in clustering algorithms often leads to clusters that are not useful or interesting to human reviewers. We investigate if supervision can be automatically transferred to a clustering task in a target domain, by providing a relevant supervised partitioning of a dataset from a different source domain. The target clustering is made more meaningful for the human user by trading off intrinsic clustering goodness on the target dataset for alignment with relevant supervised partitions in the source dataset, wherever possible. We propose a cross-guided clustering algorithm that builds on traditional k-means by aligning the target clusters with source partitions. The alignment process makes use of a cross-domain similarity measure that discovers hidden relationships across domains with potentially different vocabularies. Using multiple real-world datasets, we show that our approach improves clustering accuracy significantly over traditional k-means.\",\"PeriodicalId\":247645,\"journal\":{\"name\":\"2009 Ninth IEEE International Conference on Data Mining\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2009.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2009.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在聚类算法中缺乏监督通常会导致聚类对人类评论者来说没有用处或没有兴趣。我们通过提供来自不同源域的数据集的相关监督分区,研究监督是否可以自动转移到目标域中的聚类任务。在任何可能的情况下,通过权衡目标数据集上的固有聚类优点来与源数据集中的相关监督分区保持一致,目标聚类对人类用户来说更有意义。我们提出了一种基于传统k-means的交叉引导聚类算法,通过将目标聚类与源分区对齐。对齐过程使用跨域相似性度量来发现具有潜在不同词汇表的域之间的隐藏关系。使用多个真实数据集,我们表明我们的方法比传统的k-means显著提高了聚类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Guided Clustering: Transfer of Relevant Supervision across Domains for Improved Clustering
Lack of supervision in clustering algorithms often leads to clusters that are not useful or interesting to human reviewers. We investigate if supervision can be automatically transferred to a clustering task in a target domain, by providing a relevant supervised partitioning of a dataset from a different source domain. The target clustering is made more meaningful for the human user by trading off intrinsic clustering goodness on the target dataset for alignment with relevant supervised partitions in the source dataset, wherever possible. We propose a cross-guided clustering algorithm that builds on traditional k-means by aligning the target clusters with source partitions. The alignment process makes use of a cross-domain similarity measure that discovers hidden relationships across domains with potentially different vocabularies. Using multiple real-world datasets, we show that our approach improves clustering accuracy significantly over traditional k-means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信