{"title":"有限集的独立类型规划","authors":"Denis Firsov, Tarmo Uustalu","doi":"10.1145/2808098.2808102","DOIUrl":null,"url":null,"abstract":"Definitions of many mathematical structures used in computer science are parametrized by finite sets. To work with such structures in proof assistants, we need to be able to explain what a finite set is. In constructive mathematics, a widely used definition is listability: a set is considered to be finite, if its elements can be listed completely. In this paper, we formalize different variations of this definition in the Agda programming language. We develop a toolbox for boilerplate-free programming with finite sets that arise as subsets of some base set with decidable equality. Among other things we implement combinators for defining functions from finite sets and a prover for quantified formulas over decidable properties on finite sets.","PeriodicalId":423582,"journal":{"name":"Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dependently typed programming with finite sets\",\"authors\":\"Denis Firsov, Tarmo Uustalu\",\"doi\":\"10.1145/2808098.2808102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Definitions of many mathematical structures used in computer science are parametrized by finite sets. To work with such structures in proof assistants, we need to be able to explain what a finite set is. In constructive mathematics, a widely used definition is listability: a set is considered to be finite, if its elements can be listed completely. In this paper, we formalize different variations of this definition in the Agda programming language. We develop a toolbox for boilerplate-free programming with finite sets that arise as subsets of some base set with decidable equality. Among other things we implement combinators for defining functions from finite sets and a prover for quantified formulas over decidable properties on finite sets.\",\"PeriodicalId\":423582,\"journal\":{\"name\":\"Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808098.2808102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808098.2808102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Definitions of many mathematical structures used in computer science are parametrized by finite sets. To work with such structures in proof assistants, we need to be able to explain what a finite set is. In constructive mathematics, a widely used definition is listability: a set is considered to be finite, if its elements can be listed completely. In this paper, we formalize different variations of this definition in the Agda programming language. We develop a toolbox for boilerplate-free programming with finite sets that arise as subsets of some base set with decidable equality. Among other things we implement combinators for defining functions from finite sets and a prover for quantified formulas over decidable properties on finite sets.