N. Ciocchini, M. Laudato, A. Leone, P. Fantini, A. Lacaita, D. Ielmini
{"title":"相变存储器中的通用热电特性","authors":"N. Ciocchini, M. Laudato, A. Leone, P. Fantini, A. Lacaita, D. Ielmini","doi":"10.1109/IMW.2015.7150311","DOIUrl":null,"url":null,"abstract":"Thermoelectric effects play an important role in phase change memory (PCM), where phase transition and atomic migration are accelerated by temperature. A deep understanding of thermoelectric effects may allow a physics-based design of the cell structure and materials to optimize programming speed/energy and reliability. In this work we study the polarity-dependence of PCM characteristics, including crystallization, melting, electrical switching/holding, and ion migration. These characteristics show slower kinetics at negative voltage, which we attribute to thermoelectric effects of electrically-induced heating. We demonstrate a universal correlation of positive/negative kinetics, which we reproduce by modelling Thomson and Peltier heating in the PCM device.","PeriodicalId":107437,"journal":{"name":"2015 IEEE International Memory Workshop (IMW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Universal Thermoelectric Characteristic in Phase Change Memories\",\"authors\":\"N. Ciocchini, M. Laudato, A. Leone, P. Fantini, A. Lacaita, D. Ielmini\",\"doi\":\"10.1109/IMW.2015.7150311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoelectric effects play an important role in phase change memory (PCM), where phase transition and atomic migration are accelerated by temperature. A deep understanding of thermoelectric effects may allow a physics-based design of the cell structure and materials to optimize programming speed/energy and reliability. In this work we study the polarity-dependence of PCM characteristics, including crystallization, melting, electrical switching/holding, and ion migration. These characteristics show slower kinetics at negative voltage, which we attribute to thermoelectric effects of electrically-induced heating. We demonstrate a universal correlation of positive/negative kinetics, which we reproduce by modelling Thomson and Peltier heating in the PCM device.\",\"PeriodicalId\":107437,\"journal\":{\"name\":\"2015 IEEE International Memory Workshop (IMW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Memory Workshop (IMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMW.2015.7150311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2015.7150311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Universal Thermoelectric Characteristic in Phase Change Memories
Thermoelectric effects play an important role in phase change memory (PCM), where phase transition and atomic migration are accelerated by temperature. A deep understanding of thermoelectric effects may allow a physics-based design of the cell structure and materials to optimize programming speed/energy and reliability. In this work we study the polarity-dependence of PCM characteristics, including crystallization, melting, electrical switching/holding, and ion migration. These characteristics show slower kinetics at negative voltage, which we attribute to thermoelectric effects of electrically-induced heating. We demonstrate a universal correlation of positive/negative kinetics, which we reproduce by modelling Thomson and Peltier heating in the PCM device.