基于混合特征和深度神经网络的车型分类

N. Sathyanarayana, A. Narasimhamurthy
{"title":"基于混合特征和深度神经网络的车型分类","authors":"N. Sathyanarayana, A. Narasimhamurthy","doi":"10.4018/ijamc.292518","DOIUrl":null,"url":null,"abstract":"Currently, considerable research has been done in vehicle type classification, especially due to the success of deep learning in many image classification problems. In this research, a system incorporating hybrid features is proposed to improve the performance of vehicle type classification. The feature vectors are extracted from the pre-processed images using Gabor features, a histogram of oriented gradients and a local optimal oriented pattern. The hybrid set of features contains complementary information that could help discriminate between the classes better, further, an ant colony optimizer is utilized to reduce the dimension of the extracted feature vectors. Finally, a deep neural network is used to classify the types of vehicles in the images. The proposed approach was tested on the MIO vision traffic camera dataset and another more challenging real-world dataset consisting of videos of multiple lanes of a toll plaza. The proposed model showed an improvement in accuracy ranging from 0.28% to 8.68% in the MIO TCD dataset when compared to well-known neural network architectures.","PeriodicalId":396598,"journal":{"name":"Int. J. Softw. Innov.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle Type Classification Using Hybrid Features and a Deep Neural Network\",\"authors\":\"N. Sathyanarayana, A. Narasimhamurthy\",\"doi\":\"10.4018/ijamc.292518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, considerable research has been done in vehicle type classification, especially due to the success of deep learning in many image classification problems. In this research, a system incorporating hybrid features is proposed to improve the performance of vehicle type classification. The feature vectors are extracted from the pre-processed images using Gabor features, a histogram of oriented gradients and a local optimal oriented pattern. The hybrid set of features contains complementary information that could help discriminate between the classes better, further, an ant colony optimizer is utilized to reduce the dimension of the extracted feature vectors. Finally, a deep neural network is used to classify the types of vehicles in the images. The proposed approach was tested on the MIO vision traffic camera dataset and another more challenging real-world dataset consisting of videos of multiple lanes of a toll plaza. The proposed model showed an improvement in accuracy ranging from 0.28% to 8.68% in the MIO TCD dataset when compared to well-known neural network architectures.\",\"PeriodicalId\":396598,\"journal\":{\"name\":\"Int. J. Softw. Innov.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Innov.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijamc.292518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijamc.292518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,在车辆类型分类方面已经做了大量的研究,特别是深度学习在许多图像分类问题上取得了成功。在本研究中,提出了一种结合混合特征的系统来提高车型分类的性能。利用Gabor特征、定向梯度直方图和局部最优定向模式从预处理图像中提取特征向量。混合特征集包含互补信息,可以帮助更好地区分类别,此外,利用蚁群优化器降低提取的特征向量的维数。最后,利用深度神经网络对图像中的车辆类型进行分类。该方法在MIO视觉交通摄像头数据集和另一个更具挑战性的真实数据集上进行了测试,该数据集由收费广场的多车道视频组成。与已知的神经网络结构相比,该模型在MIO TCD数据集中的准确率提高了0.28%至8.68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Type Classification Using Hybrid Features and a Deep Neural Network
Currently, considerable research has been done in vehicle type classification, especially due to the success of deep learning in many image classification problems. In this research, a system incorporating hybrid features is proposed to improve the performance of vehicle type classification. The feature vectors are extracted from the pre-processed images using Gabor features, a histogram of oriented gradients and a local optimal oriented pattern. The hybrid set of features contains complementary information that could help discriminate between the classes better, further, an ant colony optimizer is utilized to reduce the dimension of the extracted feature vectors. Finally, a deep neural network is used to classify the types of vehicles in the images. The proposed approach was tested on the MIO vision traffic camera dataset and another more challenging real-world dataset consisting of videos of multiple lanes of a toll plaza. The proposed model showed an improvement in accuracy ranging from 0.28% to 8.68% in the MIO TCD dataset when compared to well-known neural network architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信