Qinyi Du, Qingqing Wang, Keqian Li, Jidong Tian, Liqiang Xiao, Yaohui Jin
{"title":"CALM:用于文档图像理解的常识知识增强","authors":"Qinyi Du, Qingqing Wang, Keqian Li, Jidong Tian, Liqiang Xiao, Yaohui Jin","doi":"10.1145/3503161.3548321","DOIUrl":null,"url":null,"abstract":"Performance of document image understanding has been significantly fueled by encoding multi-modal information in recent years. However, existing works heavily rely on the superficial appearance of the observed data, resulting in counter-intuitive model behavior in many critical cases. To overcome this issue, this paper proposes a common-sense knowledge augmented model CALM for document image understanding tasks. It firstly produces purified representations of document contents to extract key information and learn common-sense augmented representation for inputs. Then, relevant common-sense knowledge is extracted from the external ConceptNet knowledge base, and a derived knowledge graph is built to enhance the common-sense reasoning capability of CALM jointly. In order to further highlight the importance of common-sense knowledge in document image understanding, we propose the first question-answering dataset, CS-DVQA, focused on common-sense reasoning for document images, in which questions are answered by taking both document contents and common-sense knowledge into consideration. Through extensive evaluation, the proposed CALM approach outperforms the state-of-the-art models in three document image understanding tasks, including key information extraction(from 85.37 to 86.52), document image classification(from 96.08 to 96.17), document visual question answering(from 86.72 to 88.03).","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CALM: Commen-Sense Knowledge Augmentation for Document Image Understanding\",\"authors\":\"Qinyi Du, Qingqing Wang, Keqian Li, Jidong Tian, Liqiang Xiao, Yaohui Jin\",\"doi\":\"10.1145/3503161.3548321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance of document image understanding has been significantly fueled by encoding multi-modal information in recent years. However, existing works heavily rely on the superficial appearance of the observed data, resulting in counter-intuitive model behavior in many critical cases. To overcome this issue, this paper proposes a common-sense knowledge augmented model CALM for document image understanding tasks. It firstly produces purified representations of document contents to extract key information and learn common-sense augmented representation for inputs. Then, relevant common-sense knowledge is extracted from the external ConceptNet knowledge base, and a derived knowledge graph is built to enhance the common-sense reasoning capability of CALM jointly. In order to further highlight the importance of common-sense knowledge in document image understanding, we propose the first question-answering dataset, CS-DVQA, focused on common-sense reasoning for document images, in which questions are answered by taking both document contents and common-sense knowledge into consideration. Through extensive evaluation, the proposed CALM approach outperforms the state-of-the-art models in three document image understanding tasks, including key information extraction(from 85.37 to 86.52), document image classification(from 96.08 to 96.17), document visual question answering(from 86.72 to 88.03).\",\"PeriodicalId\":412792,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503161.3548321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CALM: Commen-Sense Knowledge Augmentation for Document Image Understanding
Performance of document image understanding has been significantly fueled by encoding multi-modal information in recent years. However, existing works heavily rely on the superficial appearance of the observed data, resulting in counter-intuitive model behavior in many critical cases. To overcome this issue, this paper proposes a common-sense knowledge augmented model CALM for document image understanding tasks. It firstly produces purified representations of document contents to extract key information and learn common-sense augmented representation for inputs. Then, relevant common-sense knowledge is extracted from the external ConceptNet knowledge base, and a derived knowledge graph is built to enhance the common-sense reasoning capability of CALM jointly. In order to further highlight the importance of common-sense knowledge in document image understanding, we propose the first question-answering dataset, CS-DVQA, focused on common-sense reasoning for document images, in which questions are answered by taking both document contents and common-sense knowledge into consideration. Through extensive evaluation, the proposed CALM approach outperforms the state-of-the-art models in three document image understanding tasks, including key information extraction(from 85.37 to 86.52), document image classification(from 96.08 to 96.17), document visual question answering(from 86.72 to 88.03).