乌尔都语文本分类

Abbas Raza Ali, Maliha Ijaz
{"title":"乌尔都语文本分类","authors":"Abbas Raza Ali, Maliha Ijaz","doi":"10.1145/1838002.1838025","DOIUrl":null,"url":null,"abstract":"This paper compares statistical techniques for text classification using Naïve Bayes and Support Vector Machines, in context of Urdu language. A large corpus is used for training and testing purpose of the classifiers. However, those classifiers cannot directly interpret the raw dataset, so language specific preprocessing techniques are applied on it to generate a standardized and reduced-feature lexicon. Urdu language is morphological rich language which makes those tasks complex. Statistical characteristics of corpus and lexicon are measured which show satisfactory results of text preprocessing module. The empirical results show that Support Vector Machines outperform Naïve Bayes classifier in terms of classification accuracy.","PeriodicalId":434420,"journal":{"name":"International Conference on Frontiers of Information Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Urdu text classification\",\"authors\":\"Abbas Raza Ali, Maliha Ijaz\",\"doi\":\"10.1145/1838002.1838025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares statistical techniques for text classification using Naïve Bayes and Support Vector Machines, in context of Urdu language. A large corpus is used for training and testing purpose of the classifiers. However, those classifiers cannot directly interpret the raw dataset, so language specific preprocessing techniques are applied on it to generate a standardized and reduced-feature lexicon. Urdu language is morphological rich language which makes those tasks complex. Statistical characteristics of corpus and lexicon are measured which show satisfactory results of text preprocessing module. The empirical results show that Support Vector Machines outperform Naïve Bayes classifier in terms of classification accuracy.\",\"PeriodicalId\":434420,\"journal\":{\"name\":\"International Conference on Frontiers of Information Technology\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Frontiers of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1838002.1838025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1838002.1838025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

本文比较了在乌尔都语背景下使用Naïve贝叶斯和支持向量机进行文本分类的统计技术。一个大型语料库用于训练和测试分类器。然而,这些分类器不能直接解释原始数据集,因此对其应用特定于语言的预处理技术来生成标准化和特征简化的词典。乌尔都语是一种形态丰富的语言,这使得这些任务变得复杂。对语料库和词典的统计特性进行了测试,结果表明文本预处理模块取得了满意的效果。实证结果表明,支持向量机在分类精度方面优于Naïve贝叶斯分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Urdu text classification
This paper compares statistical techniques for text classification using Naïve Bayes and Support Vector Machines, in context of Urdu language. A large corpus is used for training and testing purpose of the classifiers. However, those classifiers cannot directly interpret the raw dataset, so language specific preprocessing techniques are applied on it to generate a standardized and reduced-feature lexicon. Urdu language is morphological rich language which makes those tasks complex. Statistical characteristics of corpus and lexicon are measured which show satisfactory results of text preprocessing module. The empirical results show that Support Vector Machines outperform Naïve Bayes classifier in terms of classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信