{"title":"乌尔都语文本分类","authors":"Abbas Raza Ali, Maliha Ijaz","doi":"10.1145/1838002.1838025","DOIUrl":null,"url":null,"abstract":"This paper compares statistical techniques for text classification using Naïve Bayes and Support Vector Machines, in context of Urdu language. A large corpus is used for training and testing purpose of the classifiers. However, those classifiers cannot directly interpret the raw dataset, so language specific preprocessing techniques are applied on it to generate a standardized and reduced-feature lexicon. Urdu language is morphological rich language which makes those tasks complex. Statistical characteristics of corpus and lexicon are measured which show satisfactory results of text preprocessing module. The empirical results show that Support Vector Machines outperform Naïve Bayes classifier in terms of classification accuracy.","PeriodicalId":434420,"journal":{"name":"International Conference on Frontiers of Information Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Urdu text classification\",\"authors\":\"Abbas Raza Ali, Maliha Ijaz\",\"doi\":\"10.1145/1838002.1838025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares statistical techniques for text classification using Naïve Bayes and Support Vector Machines, in context of Urdu language. A large corpus is used for training and testing purpose of the classifiers. However, those classifiers cannot directly interpret the raw dataset, so language specific preprocessing techniques are applied on it to generate a standardized and reduced-feature lexicon. Urdu language is morphological rich language which makes those tasks complex. Statistical characteristics of corpus and lexicon are measured which show satisfactory results of text preprocessing module. The empirical results show that Support Vector Machines outperform Naïve Bayes classifier in terms of classification accuracy.\",\"PeriodicalId\":434420,\"journal\":{\"name\":\"International Conference on Frontiers of Information Technology\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Frontiers of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1838002.1838025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1838002.1838025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper compares statistical techniques for text classification using Naïve Bayes and Support Vector Machines, in context of Urdu language. A large corpus is used for training and testing purpose of the classifiers. However, those classifiers cannot directly interpret the raw dataset, so language specific preprocessing techniques are applied on it to generate a standardized and reduced-feature lexicon. Urdu language is morphological rich language which makes those tasks complex. Statistical characteristics of corpus and lexicon are measured which show satisfactory results of text preprocessing module. The empirical results show that Support Vector Machines outperform Naïve Bayes classifier in terms of classification accuracy.