Huan-Hua Chang, Wen-Cheng Chen, Wan-Lun Tsai, Min-Chun Hu, W. Chu
{"title":"篮球即时防守轨迹生成的自回归生成模型","authors":"Huan-Hua Chang, Wen-Cheng Chen, Wan-Lun Tsai, Min-Chun Hu, W. Chu","doi":"10.1145/3444685.3446300","DOIUrl":null,"url":null,"abstract":"Learning basketball tactic via virtual reality environment requires real-time feedback to improve the realism and interactivity. For example, the virtual defender should move immediately according to the player's movement. In this paper, we proposed an autoregressive generative model for basketball defensive trajectory generation. To learn the continuous Gaussian distribution of player position, we adopt a differentiable sampling process to sample the candidate location with a standard deviation loss, which can preserve the diversity of the trajectories. Furthermore, we design several additional loss functions based on the domain knowledge of basketball to make the generated trajectories match the real situation in basketball games. The experimental results show that the proposed method can achieve better performance than previous works in terms of different evaluation metrics.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An autoregressive generation model for producing instant basketball defensive trajectory\",\"authors\":\"Huan-Hua Chang, Wen-Cheng Chen, Wan-Lun Tsai, Min-Chun Hu, W. Chu\",\"doi\":\"10.1145/3444685.3446300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning basketball tactic via virtual reality environment requires real-time feedback to improve the realism and interactivity. For example, the virtual defender should move immediately according to the player's movement. In this paper, we proposed an autoregressive generative model for basketball defensive trajectory generation. To learn the continuous Gaussian distribution of player position, we adopt a differentiable sampling process to sample the candidate location with a standard deviation loss, which can preserve the diversity of the trajectories. Furthermore, we design several additional loss functions based on the domain knowledge of basketball to make the generated trajectories match the real situation in basketball games. The experimental results show that the proposed method can achieve better performance than previous works in terms of different evaluation metrics.\",\"PeriodicalId\":119278,\"journal\":{\"name\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444685.3446300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An autoregressive generation model for producing instant basketball defensive trajectory
Learning basketball tactic via virtual reality environment requires real-time feedback to improve the realism and interactivity. For example, the virtual defender should move immediately according to the player's movement. In this paper, we proposed an autoregressive generative model for basketball defensive trajectory generation. To learn the continuous Gaussian distribution of player position, we adopt a differentiable sampling process to sample the candidate location with a standard deviation loss, which can preserve the diversity of the trajectories. Furthermore, we design several additional loss functions based on the domain knowledge of basketball to make the generated trajectories match the real situation in basketball games. The experimental results show that the proposed method can achieve better performance than previous works in terms of different evaluation metrics.