Jichuan Chang, Parthasarathy Ranganathan, T. Mudge, D. Roberts, Mehul A. Shah, Kevin T. Lim
{"title":"基于纳米存储的未来以数据为中心的系统架构的局限性研究","authors":"Jichuan Chang, Parthasarathy Ranganathan, T. Mudge, D. Roberts, Mehul A. Shah, Kevin T. Lim","doi":"10.1145/2212908.2212915","DOIUrl":null,"url":null,"abstract":"The adoption of non-volatile memories (NVMs) in system architecture and the growth in data-centric workloads offer exciting opportunities for new designs. In this paper, we examine the potential and limit of designs that move compute in close proximity to NVM-based data stores. To address the challenges in evaluating such system architectures for distributed systems, we develop and validate a new methodology for large-scale data-centric workloads. We then study \"nanostores\" as an example design that constructs distributed systems from building blocks with 3D-stacked compute and NVM layers on the same chip, replacing both traditional storage and memory with NVM. Our limits study demonstrates significant potential of this approach (3-162X improvement in energy delay product) over 2015 baselines, particularly for IO-intensive workloads. We also discuss and quantify the impact of network bandwidth, software scalability, and power density, and design tradeoffs for future NVM-based data-centric architectures.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A limits study of benefits from nanostore-based future data-centric system architectures\",\"authors\":\"Jichuan Chang, Parthasarathy Ranganathan, T. Mudge, D. Roberts, Mehul A. Shah, Kevin T. Lim\",\"doi\":\"10.1145/2212908.2212915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adoption of non-volatile memories (NVMs) in system architecture and the growth in data-centric workloads offer exciting opportunities for new designs. In this paper, we examine the potential and limit of designs that move compute in close proximity to NVM-based data stores. To address the challenges in evaluating such system architectures for distributed systems, we develop and validate a new methodology for large-scale data-centric workloads. We then study \\\"nanostores\\\" as an example design that constructs distributed systems from building blocks with 3D-stacked compute and NVM layers on the same chip, replacing both traditional storage and memory with NVM. Our limits study demonstrates significant potential of this approach (3-162X improvement in energy delay product) over 2015 baselines, particularly for IO-intensive workloads. We also discuss and quantify the impact of network bandwidth, software scalability, and power density, and design tradeoffs for future NVM-based data-centric architectures.\",\"PeriodicalId\":430420,\"journal\":{\"name\":\"ACM International Conference on Computing Frontiers\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2212908.2212915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2212908.2212915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A limits study of benefits from nanostore-based future data-centric system architectures
The adoption of non-volatile memories (NVMs) in system architecture and the growth in data-centric workloads offer exciting opportunities for new designs. In this paper, we examine the potential and limit of designs that move compute in close proximity to NVM-based data stores. To address the challenges in evaluating such system architectures for distributed systems, we develop and validate a new methodology for large-scale data-centric workloads. We then study "nanostores" as an example design that constructs distributed systems from building blocks with 3D-stacked compute and NVM layers on the same chip, replacing both traditional storage and memory with NVM. Our limits study demonstrates significant potential of this approach (3-162X improvement in energy delay product) over 2015 baselines, particularly for IO-intensive workloads. We also discuss and quantify the impact of network bandwidth, software scalability, and power density, and design tradeoffs for future NVM-based data-centric architectures.