显微镜下CoPhIR图像采集

Michal Batko, Petra Budíková, David Novak
{"title":"显微镜下CoPhIR图像采集","authors":"Michal Batko, Petra Budíková, David Novak","doi":"10.1109/SISAP.2009.25","DOIUrl":null,"url":null,"abstract":"The Content-based Photo Image Retrieval (CoPhIR) dataset is the largest available database of digital images with corresponding visual descriptors. It contains five MPEG-7 global descriptors extracted from more than 106 million images from Flickr photo-sharing system. In this paper, we analyze this dataset focusing on 1) efficiency of similarity-based indexing and searching and on 2) expressiveness of combination of the descriptors with respect to subjective perception of visual similarity. We treat the descriptors as metric spaces and then combine them into a multi-metric space. We analyze distance distributions of individual descriptors, measure intrinsic dimensionality of these datasets and statistically evaluate correlation between these descriptors. Further, we use two methods to assess subjective accuracy and satisfaction of similarity retrieval based on a combination of descriptors that is recommended for CoPhIR, and we compare these results on databases of 10 and 100 million CoPhIR images. Finally, we suggest, explore and evaluate two approaches to improve the accuracy: 1) applying logarithms in order to weaken influence of a single descriptor contribution if it deviates from the rest, and 2) the possibility of categorization of the dataset and identifying visual characteristics important for individual categories.","PeriodicalId":130242,"journal":{"name":"2009 Second International Workshop on Similarity Search and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"CoPhIR Image Collection under the Microscope\",\"authors\":\"Michal Batko, Petra Budíková, David Novak\",\"doi\":\"10.1109/SISAP.2009.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Content-based Photo Image Retrieval (CoPhIR) dataset is the largest available database of digital images with corresponding visual descriptors. It contains five MPEG-7 global descriptors extracted from more than 106 million images from Flickr photo-sharing system. In this paper, we analyze this dataset focusing on 1) efficiency of similarity-based indexing and searching and on 2) expressiveness of combination of the descriptors with respect to subjective perception of visual similarity. We treat the descriptors as metric spaces and then combine them into a multi-metric space. We analyze distance distributions of individual descriptors, measure intrinsic dimensionality of these datasets and statistically evaluate correlation between these descriptors. Further, we use two methods to assess subjective accuracy and satisfaction of similarity retrieval based on a combination of descriptors that is recommended for CoPhIR, and we compare these results on databases of 10 and 100 million CoPhIR images. Finally, we suggest, explore and evaluate two approaches to improve the accuracy: 1) applying logarithms in order to weaken influence of a single descriptor contribution if it deviates from the rest, and 2) the possibility of categorization of the dataset and identifying visual characteristics important for individual categories.\",\"PeriodicalId\":130242,\"journal\":{\"name\":\"2009 Second International Workshop on Similarity Search and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Workshop on Similarity Search and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISAP.2009.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Similarity Search and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISAP.2009.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

基于内容的照片图像检索(CoPhIR)数据集是具有相应视觉描述符的数字图像的最大可用数据库。它包含从Flickr照片共享系统中提取的超过1.06亿张图片中提取的5个MPEG-7全局描述符。在本文中,我们分析了这个数据集,重点是1)基于相似度的索引和搜索的效率,以及2)描述符组合在视觉相似度主观感知方面的表达能力。我们将描述符作为度量空间,然后将它们组合成一个多度量空间。我们分析了单个描述符的距离分布,测量了这些数据集的内在维数,并统计评估了这些描述符之间的相关性。此外,我们使用了两种方法来评估基于CoPhIR推荐的描述符组合的相似性检索的主观准确性和满意度,并在1000万和1亿CoPhIR图像数据库上比较了这些结果。最后,我们建议,探索和评估两种方法来提高准确性:1)应用对数,以削弱单个描述符贡献的影响,如果它偏离其余部分,以及2)对数据集进行分类和识别对单个类别重要的视觉特征的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CoPhIR Image Collection under the Microscope
The Content-based Photo Image Retrieval (CoPhIR) dataset is the largest available database of digital images with corresponding visual descriptors. It contains five MPEG-7 global descriptors extracted from more than 106 million images from Flickr photo-sharing system. In this paper, we analyze this dataset focusing on 1) efficiency of similarity-based indexing and searching and on 2) expressiveness of combination of the descriptors with respect to subjective perception of visual similarity. We treat the descriptors as metric spaces and then combine them into a multi-metric space. We analyze distance distributions of individual descriptors, measure intrinsic dimensionality of these datasets and statistically evaluate correlation between these descriptors. Further, we use two methods to assess subjective accuracy and satisfaction of similarity retrieval based on a combination of descriptors that is recommended for CoPhIR, and we compare these results on databases of 10 and 100 million CoPhIR images. Finally, we suggest, explore and evaluate two approaches to improve the accuracy: 1) applying logarithms in order to weaken influence of a single descriptor contribution if it deviates from the rest, and 2) the possibility of categorization of the dataset and identifying visual characteristics important for individual categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信