学习稀疏对抗字典用于多类音频分类

Vaisakh Shaj, Puranjoy Bhattacharya
{"title":"学习稀疏对抗字典用于多类音频分类","authors":"Vaisakh Shaj, Puranjoy Bhattacharya","doi":"10.1109/ACPR.2017.137","DOIUrl":null,"url":null,"abstract":"Audio events are quite often overlapping in nature, and more prone to noise than visual signals. There has been increasing evidence for the superior performance of representations learned using sparse dictionaries for applications like audio denoising and speech enhancement. This paper concentrates on modifying the traditional reconstructive dictionary learning algorithms, by incorporating a discriminative term into the objective function inorder to learn class specific adversarial dictionaries that are good at representing samples of their own class at the same time poor at representing samples belonging to any other class. We quantitatively demonstrate the effectiveness of our learned dictionaries as a stand-alone solution for both binary as well as multi-class audio classification problems.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Sparse Adversarial Dictionaries for Multi-class Audio Classification\",\"authors\":\"Vaisakh Shaj, Puranjoy Bhattacharya\",\"doi\":\"10.1109/ACPR.2017.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audio events are quite often overlapping in nature, and more prone to noise than visual signals. There has been increasing evidence for the superior performance of representations learned using sparse dictionaries for applications like audio denoising and speech enhancement. This paper concentrates on modifying the traditional reconstructive dictionary learning algorithms, by incorporating a discriminative term into the objective function inorder to learn class specific adversarial dictionaries that are good at representing samples of their own class at the same time poor at representing samples belonging to any other class. We quantitatively demonstrate the effectiveness of our learned dictionaries as a stand-alone solution for both binary as well as multi-class audio classification problems.\",\"PeriodicalId\":426561,\"journal\":{\"name\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2017.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

音频事件通常在本质上是重叠的,并且比视觉信号更容易产生噪音。越来越多的证据表明,在音频去噪和语音增强等应用中,使用稀疏字典学习的表示具有优越的性能。本文主要对传统的重构字典学习算法进行改进,在目标函数中加入一个判别项,以学习类特定的对抗字典,这些字典擅长表示自己类的样本,同时不擅长表示属于任何其他类的样本。我们定量地证明了我们的学习字典作为二进制和多类音频分类问题的独立解决方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Sparse Adversarial Dictionaries for Multi-class Audio Classification
Audio events are quite often overlapping in nature, and more prone to noise than visual signals. There has been increasing evidence for the superior performance of representations learned using sparse dictionaries for applications like audio denoising and speech enhancement. This paper concentrates on modifying the traditional reconstructive dictionary learning algorithms, by incorporating a discriminative term into the objective function inorder to learn class specific adversarial dictionaries that are good at representing samples of their own class at the same time poor at representing samples belonging to any other class. We quantitatively demonstrate the effectiveness of our learned dictionaries as a stand-alone solution for both binary as well as multi-class audio classification problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信