循环网络自动机与上同调波

Yiqing Cai, R. Ghrist
{"title":"循环网络自动机与上同调波","authors":"Yiqing Cai, R. Ghrist","doi":"10.1109/IPSN.2014.6846754","DOIUrl":null,"url":null,"abstract":"Following Baryshnikov-Coffman-Kwak [2], we use cyclic network automata (CNA) to generate a decentralized protocol for dynamic coverage problems in a sensor network, with only a small fraction of sensors awake at every moment. This paper gives a rigorous analysis of CNA and shows that waves of awake-state nodes automatically solve pusuit/evasion-type problems without centralized coordination. As a corollary of this work, we unearth some interesting topological interpretations of features previously observed in cyclic cellular automata (CCA). By considering CCA over networks and completing to simplicial complexes, we induce dynamics on the higher-dimensional complex. In this setting, waves are seen to be generated by topological defects with a nontrivial degree (or winding number). The simplicial complex has the topological type of the underlying map of the workspace (a subset of the plane), and the resulting waves can be classified cohomologically. This allows one to “program” pulses in the sensor network according to cohomology class. We give a realization theorem for such pulse waves.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cyclic network automata and cohomological waves\",\"authors\":\"Yiqing Cai, R. Ghrist\",\"doi\":\"10.1109/IPSN.2014.6846754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following Baryshnikov-Coffman-Kwak [2], we use cyclic network automata (CNA) to generate a decentralized protocol for dynamic coverage problems in a sensor network, with only a small fraction of sensors awake at every moment. This paper gives a rigorous analysis of CNA and shows that waves of awake-state nodes automatically solve pusuit/evasion-type problems without centralized coordination. As a corollary of this work, we unearth some interesting topological interpretations of features previously observed in cyclic cellular automata (CCA). By considering CCA over networks and completing to simplicial complexes, we induce dynamics on the higher-dimensional complex. In this setting, waves are seen to be generated by topological defects with a nontrivial degree (or winding number). The simplicial complex has the topological type of the underlying map of the workspace (a subset of the plane), and the resulting waves can be classified cohomologically. This allows one to “program” pulses in the sensor network according to cohomology class. We give a realization theorem for such pulse waves.\",\"PeriodicalId\":297218,\"journal\":{\"name\":\"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPSN.2014.6846754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2014.6846754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在Baryshnikov-Coffman-Kwak[2]的基础上,我们使用循环网络自动机(CNA)为传感器网络中的动态覆盖问题生成去中心化协议,在这种情况下,每一刻只有一小部分传感器处于唤醒状态。本文对CNA进行了严格的分析,表明唤醒状态节点的波在不集中协调的情况下自动解决追赶/逃避型问题。作为这项工作的必然结果,我们发现了之前在循环元胞自动机(CCA)中观察到的一些有趣的拓扑解释。通过考虑网络上的CCA并完成简单复合体,我们推导了高维复合体上的动力学。在这种情况下,波被认为是由具有非平凡度(或圈数)的拓扑缺陷产生的。简单复合体具有工作空间(平面的子集)的底层映射的拓扑类型,并且产生的波可以被上同调分类。这允许人们根据上同调类在传感器网络中“编程”脉冲。给出了该类脉冲波的实现定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic network automata and cohomological waves
Following Baryshnikov-Coffman-Kwak [2], we use cyclic network automata (CNA) to generate a decentralized protocol for dynamic coverage problems in a sensor network, with only a small fraction of sensors awake at every moment. This paper gives a rigorous analysis of CNA and shows that waves of awake-state nodes automatically solve pusuit/evasion-type problems without centralized coordination. As a corollary of this work, we unearth some interesting topological interpretations of features previously observed in cyclic cellular automata (CCA). By considering CCA over networks and completing to simplicial complexes, we induce dynamics on the higher-dimensional complex. In this setting, waves are seen to be generated by topological defects with a nontrivial degree (or winding number). The simplicial complex has the topological type of the underlying map of the workspace (a subset of the plane), and the resulting waves can be classified cohomologically. This allows one to “program” pulses in the sensor network according to cohomology class. We give a realization theorem for such pulse waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信