从高光谱和人工智能的角度绘制海洋浮游植物组合

E. Torrecilla, J. Piera, S. Pons, I. F. Aymerich, A. Vilamala, J. Arcos, E. Plaza
{"title":"从高光谱和人工智能的角度绘制海洋浮游植物组合","authors":"E. Torrecilla, J. Piera, S. Pons, I. F. Aymerich, A. Vilamala, J. Arcos, E. Plaza","doi":"10.1109/OCEANSSYD.2010.5603683","DOIUrl":null,"url":null,"abstract":"The aim of this contribution is to demonstrate the feasibility of different processing techniques to identify phytoplankton assemblages when applied to oceanographic hyperspectral data sets (i.e. above surface measurements and vertical profiles). In order to address this issue and validate the proposed techniques, a simulated framework has been used based on the oceanic radiative transfer model Hydrolight-Ecolight 5.0. The potential offered by an unsupervised hierarchical cluster analysis technique and two Artificial Intelligence algorithms (i.e. Particle Swarm Optimization and Case-Based Reasoning) have been explored. Our results confirm their suitability to map phytoplankton's distribution from hyperspectral information given a variety of hypothetical oceanic environments.","PeriodicalId":129808,"journal":{"name":"OCEANS'10 IEEE SYDNEY","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping marine phytoplankton assemblages from a hyperspectral and Artificial Intelligence perspective\",\"authors\":\"E. Torrecilla, J. Piera, S. Pons, I. F. Aymerich, A. Vilamala, J. Arcos, E. Plaza\",\"doi\":\"10.1109/OCEANSSYD.2010.5603683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this contribution is to demonstrate the feasibility of different processing techniques to identify phytoplankton assemblages when applied to oceanographic hyperspectral data sets (i.e. above surface measurements and vertical profiles). In order to address this issue and validate the proposed techniques, a simulated framework has been used based on the oceanic radiative transfer model Hydrolight-Ecolight 5.0. The potential offered by an unsupervised hierarchical cluster analysis technique and two Artificial Intelligence algorithms (i.e. Particle Swarm Optimization and Case-Based Reasoning) have been explored. Our results confirm their suitability to map phytoplankton's distribution from hyperspectral information given a variety of hypothetical oceanic environments.\",\"PeriodicalId\":129808,\"journal\":{\"name\":\"OCEANS'10 IEEE SYDNEY\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS'10 IEEE SYDNEY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSSYD.2010.5603683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS'10 IEEE SYDNEY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSSYD.2010.5603683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这一贡献的目的是证明在应用于海洋高光谱数据集(即地表以上测量和垂直剖面)时,识别浮游植物组合的不同处理技术的可行性。为了解决这一问题并验证所提出的技术,基于海洋辐射传输模型Hydrolight-Ecolight 5.0使用了一个模拟框架。本文探讨了无监督分层聚类分析技术和两种人工智能算法(即粒子群优化和基于案例的推理)所提供的潜力。我们的结果证实了它们在各种假设的海洋环境下从高光谱信息绘制浮游植物分布的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping marine phytoplankton assemblages from a hyperspectral and Artificial Intelligence perspective
The aim of this contribution is to demonstrate the feasibility of different processing techniques to identify phytoplankton assemblages when applied to oceanographic hyperspectral data sets (i.e. above surface measurements and vertical profiles). In order to address this issue and validate the proposed techniques, a simulated framework has been used based on the oceanic radiative transfer model Hydrolight-Ecolight 5.0. The potential offered by an unsupervised hierarchical cluster analysis technique and two Artificial Intelligence algorithms (i.e. Particle Swarm Optimization and Case-Based Reasoning) have been explored. Our results confirm their suitability to map phytoplankton's distribution from hyperspectral information given a variety of hypothetical oceanic environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信