微阵列分类和基于规则的癌症识别

J. Nahar, Y.-P.P. Chen, A. S. Shawkat Ali
{"title":"微阵列分类和基于规则的癌症识别","authors":"J. Nahar, Y.-P.P. Chen, A. S. Shawkat Ali","doi":"10.1109/ICICT.2007.375339","DOIUrl":null,"url":null,"abstract":"Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene expression profiles, is to identify genes or groups of genes that are highly responsible for the existence of a tumor in a cell. Our proposed modified algorithm support vector machine (SVM) is used to classify cancer related 5 microarray data and observed improved performance than previously used Interesting rule group (IRG), classification based on associations (CBA), and even a different version of SVM algorithm. Finally we use entropy measure through rule based learning algorithm to extract the responsible genes causes for cancer for each microarray problem. The rules are generated with higher acceptability.","PeriodicalId":206443,"journal":{"name":"2007 International Conference on Information and Communication Technology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Microarray Classification and Rule Based Cancer Identification\",\"authors\":\"J. Nahar, Y.-P.P. Chen, A. S. Shawkat Ali\",\"doi\":\"10.1109/ICICT.2007.375339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene expression profiles, is to identify genes or groups of genes that are highly responsible for the existence of a tumor in a cell. Our proposed modified algorithm support vector machine (SVM) is used to classify cancer related 5 microarray data and observed improved performance than previously used Interesting rule group (IRG), classification based on associations (CBA), and even a different version of SVM algorithm. Finally we use entropy measure through rule based learning algorithm to extract the responsible genes causes for cancer for each microarray problem. The rules are generated with higher acceptability.\",\"PeriodicalId\":206443,\"journal\":{\"name\":\"2007 International Conference on Information and Communication Technology\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT.2007.375339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2007.375339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

微阵列分析为细胞的完整转录谱创造了一个清晰的场景,促进了药物和治疗方法的开发,疾病诊断,并使我们能够深入研究细胞生物学。微阵列分析的关键挑战之一,特别是在癌症基因表达谱中,是识别对细胞中肿瘤存在高度负责的基因或基因群。我们提出的改进算法支持向量机(SVM)用于癌症相关微阵列数据的分类,并观察到比以前使用的有趣规则组(IRG)、基于关联的分类(CBA)甚至不同版本的支持向量机算法的性能有所提高。最后,我们通过基于规则的学习算法,利用熵度量来提取每个微阵列问题的致癌基因。生成的规则具有更高的可接受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microarray Classification and Rule Based Cancer Identification
Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene expression profiles, is to identify genes or groups of genes that are highly responsible for the existence of a tumor in a cell. Our proposed modified algorithm support vector machine (SVM) is used to classify cancer related 5 microarray data and observed improved performance than previously used Interesting rule group (IRG), classification based on associations (CBA), and even a different version of SVM algorithm. Finally we use entropy measure through rule based learning algorithm to extract the responsible genes causes for cancer for each microarray problem. The rules are generated with higher acceptability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信