Bäcklund变换的几何II: monge - ampantere不变量

Yuhao Hu
{"title":"Bäcklund变换的几何II: monge - ampantere不变量","authors":"Yuhao Hu","doi":"10.1093/integr/xyz011","DOIUrl":null,"url":null,"abstract":"\n This article is concerned with the question: For which pairs of hyperbolic Euler–Lagrange systems in the plane does there exist a rank-$1$ Bäcklund transformation relating them? We express some obstructions to such existence in terms of the local invariants of the Euler–Lagrange systems. In addition, we discover a class of Bäcklund transformations relating two hyperbolic Euler–Lagrange systems of distinct types.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geometry of Bäcklund transformations II: Monge–Ampère invariants\",\"authors\":\"Yuhao Hu\",\"doi\":\"10.1093/integr/xyz011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article is concerned with the question: For which pairs of hyperbolic Euler–Lagrange systems in the plane does there exist a rank-$1$ Bäcklund transformation relating them? We express some obstructions to such existence in terms of the local invariants of the Euler–Lagrange systems. In addition, we discover a class of Bäcklund transformations relating two hyperbolic Euler–Lagrange systems of distinct types.\",\"PeriodicalId\":242196,\"journal\":{\"name\":\"Journal of Integrable Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/integr/xyz011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/integr/xyz011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论的问题是:平面上哪一对双曲欧拉-拉格朗日系统存在与它们相关的秩-$1$ Bäcklund变换?我们用欧拉-拉格朗日系统的局部不变量来表示这种存在的一些障碍。此外,我们还发现了两个不同类型的双曲欧拉-拉格朗日系统之间的一类Bäcklund变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry of Bäcklund transformations II: Monge–Ampère invariants
This article is concerned with the question: For which pairs of hyperbolic Euler–Lagrange systems in the plane does there exist a rank-$1$ Bäcklund transformation relating them? We express some obstructions to such existence in terms of the local invariants of the Euler–Lagrange systems. In addition, we discover a class of Bäcklund transformations relating two hyperbolic Euler–Lagrange systems of distinct types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信