基于对偶上升过程的在线结构支持向量机学习

Jun Lei, Guohui Li, Jun Zhang, Dan Lu, Qiang Guo
{"title":"基于对偶上升过程的在线结构支持向量机学习","authors":"Jun Lei, Guohui Li, Jun Zhang, Dan Lu, Qiang Guo","doi":"10.1109/SPAC.2014.6982687","DOIUrl":null,"url":null,"abstract":"We propose online learning algorithms for structural SVM that has promising applications in large-scale learning. A framework is introduced for analyzing the online learning of structural SVM from primal perspective to dual perspective. The task of minimizing the primal objective function is converted to incremental increasing of the dual objective function. The model's parameter is learned through updating dual coefficients. We propose two update schemes: all outputs update scheme and most violated output update scheme. The first scheme updates dual coefficients of all the outputs, while the second schemes only updated dual coefficients of the most violated output. The performance of structural SVM is improved in online learning process. Experimental results on multiclass classification task and sequence tagging task show that our online learning algorithms achieve satisfying accuracy while reducing the computational complexity.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online structural SVM learning by dual ascending procedure\",\"authors\":\"Jun Lei, Guohui Li, Jun Zhang, Dan Lu, Qiang Guo\",\"doi\":\"10.1109/SPAC.2014.6982687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose online learning algorithms for structural SVM that has promising applications in large-scale learning. A framework is introduced for analyzing the online learning of structural SVM from primal perspective to dual perspective. The task of minimizing the primal objective function is converted to incremental increasing of the dual objective function. The model's parameter is learned through updating dual coefficients. We propose two update schemes: all outputs update scheme and most violated output update scheme. The first scheme updates dual coefficients of all the outputs, while the second schemes only updated dual coefficients of the most violated output. The performance of structural SVM is improved in online learning process. Experimental results on multiclass classification task and sequence tagging task show that our online learning algorithms achieve satisfying accuracy while reducing the computational complexity.\",\"PeriodicalId\":326246,\"journal\":{\"name\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2014.6982687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了结构化支持向量机的在线学习算法,该算法在大规模学习中有很好的应用前景。介绍了一种从原始视角到对偶视角分析结构支持向量机在线学习的框架。将原目标函数的最小化任务转化为对偶目标函数的增量递增任务。通过更新对偶系数来学习模型参数。我们提出了两种更新方案:全输出更新方案和最违例输出更新方案。第一种方案更新所有输出的对偶系数,而第二种方案只更新最违反的输出的对偶系数。在在线学习过程中,结构支持向量机的性能得到了提高。在多类分类任务和序列标注任务上的实验结果表明,我们的在线学习算法在降低计算复杂度的同时取得了令人满意的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online structural SVM learning by dual ascending procedure
We propose online learning algorithms for structural SVM that has promising applications in large-scale learning. A framework is introduced for analyzing the online learning of structural SVM from primal perspective to dual perspective. The task of minimizing the primal objective function is converted to incremental increasing of the dual objective function. The model's parameter is learned through updating dual coefficients. We propose two update schemes: all outputs update scheme and most violated output update scheme. The first scheme updates dual coefficients of all the outputs, while the second schemes only updated dual coefficients of the most violated output. The performance of structural SVM is improved in online learning process. Experimental results on multiclass classification task and sequence tagging task show that our online learning algorithms achieve satisfying accuracy while reducing the computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信