基于深度神经网络的变压器故障诊断

Hossein Mehdipourpicha, R. Bo, Haotian Chen, M. Rana, Jie Huang, Fengkai Hu
{"title":"基于深度神经网络的变压器故障诊断","authors":"Hossein Mehdipourpicha, R. Bo, Haotian Chen, M. Rana, Jie Huang, Fengkai Hu","doi":"10.1109/ISGT-Asia.2019.8881052","DOIUrl":null,"url":null,"abstract":"Analysis of dissolved gases in transformer oil is one of the practical methods for identifying the different types of faults in oil-insulated power transformers. Dissolved gas analysis (DGA) is often exercised as part of the maintenance process, and the Duval Triangle is a commonly applied method for classifying transformer faults. This paper proposes using the deep neural network to identify transformer fault type. Due to limited availability of field data, we simulate DGA data samples along with the fault type determined by Duval Triangle. Numerical results show that the deep neutral network provides very high accuracy in fault type identification and outperforms other learning methods such as k-nearest neighbor (k-NN) algorithm and random forest classifier method.","PeriodicalId":257974,"journal":{"name":"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Transformer Fault Diagnosis Using Deep Neural Network\",\"authors\":\"Hossein Mehdipourpicha, R. Bo, Haotian Chen, M. Rana, Jie Huang, Fengkai Hu\",\"doi\":\"10.1109/ISGT-Asia.2019.8881052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of dissolved gases in transformer oil is one of the practical methods for identifying the different types of faults in oil-insulated power transformers. Dissolved gas analysis (DGA) is often exercised as part of the maintenance process, and the Duval Triangle is a commonly applied method for classifying transformer faults. This paper proposes using the deep neural network to identify transformer fault type. Due to limited availability of field data, we simulate DGA data samples along with the fault type determined by Duval Triangle. Numerical results show that the deep neutral network provides very high accuracy in fault type identification and outperforms other learning methods such as k-nearest neighbor (k-NN) algorithm and random forest classifier method.\",\"PeriodicalId\":257974,\"journal\":{\"name\":\"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-Asia.2019.8881052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Asia.2019.8881052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

分析变压器油中溶解气体是识别油绝缘电力变压器不同类型故障的实用方法之一。溶解气体分析(DGA)经常作为维护过程的一部分进行,杜瓦尔三角是变压器故障分类的常用方法。提出了用深度神经网络识别变压器故障类型的方法。由于现场数据的可用性有限,我们模拟了DGA数据样本以及由Duval三角确定的故障类型。数值结果表明,深度神经网络在故障类型识别方面具有很高的准确率,并且优于k-最近邻(k-NN)算法和随机森林分类器等其他学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer Fault Diagnosis Using Deep Neural Network
Analysis of dissolved gases in transformer oil is one of the practical methods for identifying the different types of faults in oil-insulated power transformers. Dissolved gas analysis (DGA) is often exercised as part of the maintenance process, and the Duval Triangle is a commonly applied method for classifying transformer faults. This paper proposes using the deep neural network to identify transformer fault type. Due to limited availability of field data, we simulate DGA data samples along with the fault type determined by Duval Triangle. Numerical results show that the deep neutral network provides very high accuracy in fault type identification and outperforms other learning methods such as k-nearest neighbor (k-NN) algorithm and random forest classifier method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信