使用链接发现和命名实体识别技术连接SciGraph和DBpedia数据集

Beyza Yaman, Michele Pasin, M. Freudenberg
{"title":"使用链接发现和命名实体识别技术连接SciGraph和DBpedia数据集","authors":"Beyza Yaman, Michele Pasin, M. Freudenberg","doi":"10.4230/OASICS.LDK.2019.15","DOIUrl":null,"url":null,"abstract":"In recent years we have seen a proliferation of Linked Open Data (LOD) compliant datasets becoming available on the web, leading to an increased number of opportunities for data consumers to build smarter applications which integrate data coming from disparate sources. However, often the integration is not easily achievable since it requires discovering and expressing associations across heterogeneous data sets. The goal of this work is to increase the discoverability and reusability of the scholarly data by integrating them to highly interlinked datasets in the LOD cloud. In order to do so we applied techniques that a) improve the identity resolution across these two sources using Link Discovery for the structured data (i.e. by annotating Springer Nature (SN) SciGraph entities with links to DBpedia entities), and b) enriching SN SciGraph unstructured text content (document abstracts) with links to DBpedia entities using Named Entity Recognition (NER). We published the results of this work using standard vocabularies and provided an interactive exploration tool which presents the discovered links w.r.t. the breadth and depth of the DBpedia classes.","PeriodicalId":377119,"journal":{"name":"International Conference on Language, Data, and Knowledge","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Interlinking SciGraph and DBpedia Datasets Using Link Discovery and Named Entity Recognition Techniques\",\"authors\":\"Beyza Yaman, Michele Pasin, M. Freudenberg\",\"doi\":\"10.4230/OASICS.LDK.2019.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years we have seen a proliferation of Linked Open Data (LOD) compliant datasets becoming available on the web, leading to an increased number of opportunities for data consumers to build smarter applications which integrate data coming from disparate sources. However, often the integration is not easily achievable since it requires discovering and expressing associations across heterogeneous data sets. The goal of this work is to increase the discoverability and reusability of the scholarly data by integrating them to highly interlinked datasets in the LOD cloud. In order to do so we applied techniques that a) improve the identity resolution across these two sources using Link Discovery for the structured data (i.e. by annotating Springer Nature (SN) SciGraph entities with links to DBpedia entities), and b) enriching SN SciGraph unstructured text content (document abstracts) with links to DBpedia entities using Named Entity Recognition (NER). We published the results of this work using standard vocabularies and provided an interactive exploration tool which presents the discovered links w.r.t. the breadth and depth of the DBpedia classes.\",\"PeriodicalId\":377119,\"journal\":{\"name\":\"International Conference on Language, Data, and Knowledge\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Language, Data, and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASICS.LDK.2019.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Language, Data, and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASICS.LDK.2019.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

近年来,我们看到web上出现了大量符合关联开放数据(LOD)标准的数据集,这为数据消费者提供了越来越多的机会来构建更智能的应用程序,这些应用程序可以集成来自不同来源的数据。然而,集成通常不容易实现,因为它需要发现和表达跨异构数据集的关联。这项工作的目标是通过将学术数据集成到LOD云中高度互连的数据集来增加学术数据的可发现性和可重用性。为了做到这一点,我们应用了以下技术:a)使用结构化数据的链接发现来提高这两个源之间的身份解析(例如,通过使用到DBpedia实体的链接来注释施普林格Nature (SN) SciGraph实体),b)使用命名实体识别(NER)来丰富SN SciGraph非结构化文本内容(文档摘要),并使用到DBpedia实体的链接。我们使用标准词汇表发布了这项工作的结果,并提供了一个交互式探索工具,该工具除了展示DBpedia类的广度和深度外,还展示了发现的链接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interlinking SciGraph and DBpedia Datasets Using Link Discovery and Named Entity Recognition Techniques
In recent years we have seen a proliferation of Linked Open Data (LOD) compliant datasets becoming available on the web, leading to an increased number of opportunities for data consumers to build smarter applications which integrate data coming from disparate sources. However, often the integration is not easily achievable since it requires discovering and expressing associations across heterogeneous data sets. The goal of this work is to increase the discoverability and reusability of the scholarly data by integrating them to highly interlinked datasets in the LOD cloud. In order to do so we applied techniques that a) improve the identity resolution across these two sources using Link Discovery for the structured data (i.e. by annotating Springer Nature (SN) SciGraph entities with links to DBpedia entities), and b) enriching SN SciGraph unstructured text content (document abstracts) with links to DBpedia entities using Named Entity Recognition (NER). We published the results of this work using standard vocabularies and provided an interactive exploration tool which presents the discovered links w.r.t. the breadth and depth of the DBpedia classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信