{"title":"高光谱推扫成像系统的在线盲解混","authors":"Ludivine Nus, S. Miron, D. Brie","doi":"10.1109/SSP.2018.8450702","DOIUrl":null,"url":null,"abstract":"In this paper, the on-line hyperspectral image blind unmixing is addressed. Inspired by the Incremental Non-negative Matrix Factorization (INMF) method [2], we propose an on-line NMF which is adapted to the acquisition scheme of a pushbroom imager. Because of the non-uniqueness of the NMF model, a minimum volume constraint on the endmembers is added allowing to reduce the set of admissible solutions. This results in a stable algorithm yielding results similar to those of standard off-line NMF methods, but drastically reducing the computation time. The algorithm is applied to wood hyperspectral images showing that such a technique is effective for the on-line prediction of wood piece rendering after finishing.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On-Line Blind Unmixing For Hyperspectral Pushbroom Imaging Systems\",\"authors\":\"Ludivine Nus, S. Miron, D. Brie\",\"doi\":\"10.1109/SSP.2018.8450702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the on-line hyperspectral image blind unmixing is addressed. Inspired by the Incremental Non-negative Matrix Factorization (INMF) method [2], we propose an on-line NMF which is adapted to the acquisition scheme of a pushbroom imager. Because of the non-uniqueness of the NMF model, a minimum volume constraint on the endmembers is added allowing to reduce the set of admissible solutions. This results in a stable algorithm yielding results similar to those of standard off-line NMF methods, but drastically reducing the computation time. The algorithm is applied to wood hyperspectral images showing that such a technique is effective for the on-line prediction of wood piece rendering after finishing.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-Line Blind Unmixing For Hyperspectral Pushbroom Imaging Systems
In this paper, the on-line hyperspectral image blind unmixing is addressed. Inspired by the Incremental Non-negative Matrix Factorization (INMF) method [2], we propose an on-line NMF which is adapted to the acquisition scheme of a pushbroom imager. Because of the non-uniqueness of the NMF model, a minimum volume constraint on the endmembers is added allowing to reduce the set of admissible solutions. This results in a stable algorithm yielding results similar to those of standard off-line NMF methods, but drastically reducing the computation time. The algorithm is applied to wood hyperspectral images showing that such a technique is effective for the on-line prediction of wood piece rendering after finishing.