利用Copula结合相关性的负荷分布统计建模

R. Bernards, J. Morren, H. Slootweg
{"title":"利用Copula结合相关性的负荷分布统计建模","authors":"R. Bernards, J. Morren, H. Slootweg","doi":"10.1109/ISGTEurope.2017.8260181","DOIUrl":null,"url":null,"abstract":"The growth in stochastic local renewable generation and the increase in new high peak power loads such as electric vehicles and heat pumps warrants the use of more detailed load models to properly assess grid adequacy. In this paper a method is proposed to develop load and generation models based on statistical analyses of measurement data using Gaussian Mixture Models and Copula functions. The two stage approach enables separate modelling of the marginal distributions and correlation structures and is shown to be able to provide a good representation of the statistical behaviour of measured electric household load. The fitted models are then used to stochastically generate load profiles and assess the peak shaving potential and required size of an energy storage unit. Taking into account the correlations is shown to be important for a proper representation of the profiles and may have a substantial effect on the results of the analysis.","PeriodicalId":345050,"journal":{"name":"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Statistical modelling of load profiles incorporating correlations using Copula\",\"authors\":\"R. Bernards, J. Morren, H. Slootweg\",\"doi\":\"10.1109/ISGTEurope.2017.8260181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth in stochastic local renewable generation and the increase in new high peak power loads such as electric vehicles and heat pumps warrants the use of more detailed load models to properly assess grid adequacy. In this paper a method is proposed to develop load and generation models based on statistical analyses of measurement data using Gaussian Mixture Models and Copula functions. The two stage approach enables separate modelling of the marginal distributions and correlation structures and is shown to be able to provide a good representation of the statistical behaviour of measured electric household load. The fitted models are then used to stochastically generate load profiles and assess the peak shaving potential and required size of an energy storage unit. Taking into account the correlations is shown to be important for a proper representation of the profiles and may have a substantial effect on the results of the analysis.\",\"PeriodicalId\":345050,\"journal\":{\"name\":\"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2017.8260181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2017.8260181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随机本地可再生能源发电的增长和新的高峰电力负荷的增加,如电动汽车和热泵,需要使用更详细的负荷模型来适当评估电网的充分性。本文提出了一种利用高斯混合模型和Copula函数对实测数据进行统计分析,建立负荷和发电模型的方法。两阶段方法能够对边际分布和相关结构进行单独建模,并且能够很好地表示所测量的家庭电力负荷的统计行为。然后使用拟合的模型随机生成负荷曲线,并评估调峰潜力和储能单元所需的尺寸。考虑到相关性对于正确表示轮廓是很重要的,并且可能对分析结果有实质性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical modelling of load profiles incorporating correlations using Copula
The growth in stochastic local renewable generation and the increase in new high peak power loads such as electric vehicles and heat pumps warrants the use of more detailed load models to properly assess grid adequacy. In this paper a method is proposed to develop load and generation models based on statistical analyses of measurement data using Gaussian Mixture Models and Copula functions. The two stage approach enables separate modelling of the marginal distributions and correlation structures and is shown to be able to provide a good representation of the statistical behaviour of measured electric household load. The fitted models are then used to stochastically generate load profiles and assess the peak shaving potential and required size of an energy storage unit. Taking into account the correlations is shown to be important for a proper representation of the profiles and may have a substantial effect on the results of the analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信