基于机器学习的声纳图像合成语义分割

William Ard, Corina Barbalata
{"title":"基于机器学习的声纳图像合成语义分割","authors":"William Ard, Corina Barbalata","doi":"10.1109/WACVW58289.2023.00031","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for merging side scan sonar data and bathymetry information for the benefit of improved automatic shipwreck identification. The steps to combine a raw side-scan sonar image with a 2D relief map into a new composite RGB image are presented in detail, and a supervised image segmentation approach via the U-Net architecture is implemented to identify shipwrecks. To validate the effectiveness of the approach, two datasets were created from shipwreck surveys: one using side-scan only, and one using the new composite RGB images. The U-Net model was trained and tested on each dataset, and the results were compared. The test results show a mean accuracy which is 15% higher for the case where the RGB composition is used when compared with the model trained and tested with the side-scan sonar only dataset. Furthermore, the mean intersection over union (IoU) shows an increase of 9.5% using the RGB composition model.","PeriodicalId":306545,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sonar Image Composition for Semantic Segmentation Using Machine Learning\",\"authors\":\"William Ard, Corina Barbalata\",\"doi\":\"10.1109/WACVW58289.2023.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach for merging side scan sonar data and bathymetry information for the benefit of improved automatic shipwreck identification. The steps to combine a raw side-scan sonar image with a 2D relief map into a new composite RGB image are presented in detail, and a supervised image segmentation approach via the U-Net architecture is implemented to identify shipwrecks. To validate the effectiveness of the approach, two datasets were created from shipwreck surveys: one using side-scan only, and one using the new composite RGB images. The U-Net model was trained and tested on each dataset, and the results were compared. The test results show a mean accuracy which is 15% higher for the case where the RGB composition is used when compared with the model trained and tested with the side-scan sonar only dataset. Furthermore, the mean intersection over union (IoU) shows an increase of 9.5% using the RGB composition model.\",\"PeriodicalId\":306545,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW58289.2023.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW58289.2023.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种融合侧扫声纳数据和测深信息的方法,以提高海难自动识别能力。详细介绍了将原始侧扫声纳图像与2D地形图结合成新的复合RGB图像的步骤,并实现了通过U-Net架构的监督图像分割方法来识别沉船。为了验证该方法的有效性,从沉船调查中创建了两个数据集:一个仅使用侧面扫描,另一个使用新的复合RGB图像。U-Net模型在每个数据集上进行训练和测试,并对结果进行比较。测试结果显示,与仅使用侧扫声纳数据集训练和测试的模型相比,使用RGB成分的情况下,平均精度高出15%。此外,使用RGB组合模型,平均交点比联合(IoU)增加了9.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sonar Image Composition for Semantic Segmentation Using Machine Learning
This paper presents an approach for merging side scan sonar data and bathymetry information for the benefit of improved automatic shipwreck identification. The steps to combine a raw side-scan sonar image with a 2D relief map into a new composite RGB image are presented in detail, and a supervised image segmentation approach via the U-Net architecture is implemented to identify shipwrecks. To validate the effectiveness of the approach, two datasets were created from shipwreck surveys: one using side-scan only, and one using the new composite RGB images. The U-Net model was trained and tested on each dataset, and the results were compared. The test results show a mean accuracy which is 15% higher for the case where the RGB composition is used when compared with the model trained and tested with the side-scan sonar only dataset. Furthermore, the mean intersection over union (IoU) shows an increase of 9.5% using the RGB composition model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信