{"title":"使用安全网络物理信息和区块链的组件认证体系结构","authors":"M. Sandborn, Carlos Olea, Sam Hays, Jules White","doi":"10.1109/FMEC54266.2021.9732547","DOIUrl":null,"url":null,"abstract":"Cyber-physical systems (CPSs) tie software to components that manipulate physical space, and safety-critical CPSs comprise an increasing share of roles in process automation, transportation, and industrial operations. As device intercon-nectivity increases, security paradigms must be developed to address cross-domain interactions and prevent vulnerabilities from one domain (e.g. misconfigured robot controller software) manifesting in the other (e.g. mechatronic arm harms factory worker). In particular, counterfeit goods pose a significant threat to the construction of safety-critical CPSs with downstream effects spanning both cyber and physical environments (e.g. commercial aircraft with faulty fuel pump). In this paper, we present a theoretical architecture for exchanging and verifying Signed Physically Unclonable iDentities (SPUDs). The proposed system, based on Blockchain, allows tracking of components throughout a CPS supply network using both cyber and physical identifiers.","PeriodicalId":217996,"journal":{"name":"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Architecture for Component Authentication using Secure Cyber-physical Information and Blockchain\",\"authors\":\"M. Sandborn, Carlos Olea, Sam Hays, Jules White\",\"doi\":\"10.1109/FMEC54266.2021.9732547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-physical systems (CPSs) tie software to components that manipulate physical space, and safety-critical CPSs comprise an increasing share of roles in process automation, transportation, and industrial operations. As device intercon-nectivity increases, security paradigms must be developed to address cross-domain interactions and prevent vulnerabilities from one domain (e.g. misconfigured robot controller software) manifesting in the other (e.g. mechatronic arm harms factory worker). In particular, counterfeit goods pose a significant threat to the construction of safety-critical CPSs with downstream effects spanning both cyber and physical environments (e.g. commercial aircraft with faulty fuel pump). In this paper, we present a theoretical architecture for exchanging and verifying Signed Physically Unclonable iDentities (SPUDs). The proposed system, based on Blockchain, allows tracking of components throughout a CPS supply network using both cyber and physical identifiers.\",\"PeriodicalId\":217996,\"journal\":{\"name\":\"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMEC54266.2021.9732547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC54266.2021.9732547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Architecture for Component Authentication using Secure Cyber-physical Information and Blockchain
Cyber-physical systems (CPSs) tie software to components that manipulate physical space, and safety-critical CPSs comprise an increasing share of roles in process automation, transportation, and industrial operations. As device intercon-nectivity increases, security paradigms must be developed to address cross-domain interactions and prevent vulnerabilities from one domain (e.g. misconfigured robot controller software) manifesting in the other (e.g. mechatronic arm harms factory worker). In particular, counterfeit goods pose a significant threat to the construction of safety-critical CPSs with downstream effects spanning both cyber and physical environments (e.g. commercial aircraft with faulty fuel pump). In this paper, we present a theoretical architecture for exchanging and verifying Signed Physically Unclonable iDentities (SPUDs). The proposed system, based on Blockchain, allows tracking of components throughout a CPS supply network using both cyber and physical identifiers.