基于PSSM和高级三级分类器的支持向量机蛋白质二级结构预测

Hae-Jin Hu, P. Tai, R. Harrison, Jieyue He, Yi Pan
{"title":"基于PSSM和高级三级分类器的支持向量机蛋白质二级结构预测","authors":"Hae-Jin Hu, P. Tai, R. Harrison, Jieyue He, Yi Pan","doi":"10.1109/CSBW.2005.114","DOIUrl":null,"url":null,"abstract":"In this study, the support vector machine (SVM) is applied as a learning machine for the secondary structure prediction. As an encoding scheme for training the SVM, position-specific scoring matrix (PSSM) is adopted. To improve the prediction accuracy, three optimization processes such as encoding scheme, sliding window size and parameter optimization are performed. For the multi-class classification, the results of three one-versus-one binary classifiers (H/E, E/C and C/H) are combined using our new tertiary classifier called SVM/spl I.bar/Represent. By applying this new tertiary classifier, the Q/sub 3/ prediction accuracy reaches 89.6% on the RSI 26 dataset and 90.1% on the CB513 dataset. Also the Segment Overlap Measure (SOV) is 85.0% on the RS 126 dataset and 85.7% on the CB513 dataset. Compared with the existing best prediction methods, our new prediction algorithm improves the accuracy about 13%) in terms of Q/sub 3/ and SOV, the two most commonly used accuracy measures.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Protein secondary structure prediction using support vector machine with a PSSM profile and an advanced tertiary classifier\",\"authors\":\"Hae-Jin Hu, P. Tai, R. Harrison, Jieyue He, Yi Pan\",\"doi\":\"10.1109/CSBW.2005.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the support vector machine (SVM) is applied as a learning machine for the secondary structure prediction. As an encoding scheme for training the SVM, position-specific scoring matrix (PSSM) is adopted. To improve the prediction accuracy, three optimization processes such as encoding scheme, sliding window size and parameter optimization are performed. For the multi-class classification, the results of three one-versus-one binary classifiers (H/E, E/C and C/H) are combined using our new tertiary classifier called SVM/spl I.bar/Represent. By applying this new tertiary classifier, the Q/sub 3/ prediction accuracy reaches 89.6% on the RSI 26 dataset and 90.1% on the CB513 dataset. Also the Segment Overlap Measure (SOV) is 85.0% on the RS 126 dataset and 85.7% on the CB513 dataset. Compared with the existing best prediction methods, our new prediction algorithm improves the accuracy about 13%) in terms of Q/sub 3/ and SOV, the two most commonly used accuracy measures.\",\"PeriodicalId\":123531,\"journal\":{\"name\":\"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSBW.2005.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究采用支持向量机(SVM)作为学习机器进行二次结构预测。采用位置特定评分矩阵(PSSM)作为训练支持向量机的编码方案。为了提高预测精度,进行了编码方案、滑动窗口大小和参数优化3个优化过程。对于多类分类,三个一对一的二元分类器(H/E, E/C和C/H)的结果使用我们新的三级分类器SVM/spl I.bar/ representation进行组合。应用该三级分类器,在RSI 26数据集和CB513数据集上的Q/sub 3/预测准确率分别达到89.6%和90.1%。此外,RS 126数据集的分段重叠度量(SOV)为85.0%,CB513数据集为85.7%。与现有的最佳预测方法相比,我们的预测算法在Q/sub 3/和SOV这两个最常用的精度指标上的预测精度提高了13%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein secondary structure prediction using support vector machine with a PSSM profile and an advanced tertiary classifier
In this study, the support vector machine (SVM) is applied as a learning machine for the secondary structure prediction. As an encoding scheme for training the SVM, position-specific scoring matrix (PSSM) is adopted. To improve the prediction accuracy, three optimization processes such as encoding scheme, sliding window size and parameter optimization are performed. For the multi-class classification, the results of three one-versus-one binary classifiers (H/E, E/C and C/H) are combined using our new tertiary classifier called SVM/spl I.bar/Represent. By applying this new tertiary classifier, the Q/sub 3/ prediction accuracy reaches 89.6% on the RSI 26 dataset and 90.1% on the CB513 dataset. Also the Segment Overlap Measure (SOV) is 85.0% on the RS 126 dataset and 85.7% on the CB513 dataset. Compared with the existing best prediction methods, our new prediction algorithm improves the accuracy about 13%) in terms of Q/sub 3/ and SOV, the two most commonly used accuracy measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信