{"title":"模拟退火法优化传输模式","authors":"Jarno Nousiainen, J. Virtamo, P. Lassila","doi":"10.1145/2069087.2069101","DOIUrl":null,"url":null,"abstract":"We address the problem of finding efficient combinations of transmitting links between nodes distributed as a spatial Poisson process in an infinite plane using a stochastic optimization method called simulated annealing. A simple Boolean interference model with the interference radius equaling the transmission radius is used to verify the operation of the method. The same approach is then applied to SINR-determined data rates. The obtained numerical results shed light on the spatial reuse problem in wireless multihop networks. In particular, for the SINR-based interference model we obtain new results. We characterize the asymptotic behavior of the sum capacity of the optimal combination of transmitting links and the fraction of transmitting nodes in the low and high interference regimes. Additionally, the numerical results establish, in the interference-limited case of high node densities, the sum capacity (spectral efficiency) to be approximately equal to 1.2 bit/s/Hz per node.","PeriodicalId":311005,"journal":{"name":"International Workshop on Performance Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal transmission modes by simulated annealing\",\"authors\":\"Jarno Nousiainen, J. Virtamo, P. Lassila\",\"doi\":\"10.1145/2069087.2069101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of finding efficient combinations of transmitting links between nodes distributed as a spatial Poisson process in an infinite plane using a stochastic optimization method called simulated annealing. A simple Boolean interference model with the interference radius equaling the transmission radius is used to verify the operation of the method. The same approach is then applied to SINR-determined data rates. The obtained numerical results shed light on the spatial reuse problem in wireless multihop networks. In particular, for the SINR-based interference model we obtain new results. We characterize the asymptotic behavior of the sum capacity of the optimal combination of transmitting links and the fraction of transmitting nodes in the low and high interference regimes. Additionally, the numerical results establish, in the interference-limited case of high node densities, the sum capacity (spectral efficiency) to be approximately equal to 1.2 bit/s/Hz per node.\",\"PeriodicalId\":311005,\"journal\":{\"name\":\"International Workshop on Performance Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Performance Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2069087.2069101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Performance Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2069087.2069101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We address the problem of finding efficient combinations of transmitting links between nodes distributed as a spatial Poisson process in an infinite plane using a stochastic optimization method called simulated annealing. A simple Boolean interference model with the interference radius equaling the transmission radius is used to verify the operation of the method. The same approach is then applied to SINR-determined data rates. The obtained numerical results shed light on the spatial reuse problem in wireless multihop networks. In particular, for the SINR-based interference model we obtain new results. We characterize the asymptotic behavior of the sum capacity of the optimal combination of transmitting links and the fraction of transmitting nodes in the low and high interference regimes. Additionally, the numerical results establish, in the interference-limited case of high node densities, the sum capacity (spectral efficiency) to be approximately equal to 1.2 bit/s/Hz per node.