基于Müntz函数神经网络的分布式动态系统识别

B. Dankovic, Z. Jovanovic, M. Milojković
{"title":"基于Müntz函数神经网络的分布式动态系统识别","authors":"B. Dankovic, Z. Jovanovic, M. Milojković","doi":"10.1109/TELSKS.2005.1572170","DOIUrl":null,"url":null,"abstract":"This paper illustrates how the Muntz neural networks can be used effectively for identification of linear and nonlinear dynamic systems. A neuron is utilized to build the Muntz networks with locally distributed dynamics to identify input/output models of dynamic processes. For static neural network design, the orthogonal Muntz polynomials are used; for dynamic part, the orthogonal Muntz-Legendre rational functions are used","PeriodicalId":422115,"journal":{"name":"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic Systems Identification using Müntz Function Neural Networks with Distributed Dynamics\",\"authors\":\"B. Dankovic, Z. Jovanovic, M. Milojković\",\"doi\":\"10.1109/TELSKS.2005.1572170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper illustrates how the Muntz neural networks can be used effectively for identification of linear and nonlinear dynamic systems. A neuron is utilized to build the Muntz networks with locally distributed dynamics to identify input/output models of dynamic processes. For static neural network design, the orthogonal Muntz polynomials are used; for dynamic part, the orthogonal Muntz-Legendre rational functions are used\",\"PeriodicalId\":422115,\"journal\":{\"name\":\"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELSKS.2005.1572170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2005.1572170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文阐述了Muntz神经网络如何有效地用于线性和非线性动态系统的辨识。利用神经元构建局部分布动态的Muntz网络来识别动态过程的输入/输出模型。静态神经网络设计采用正交蒙兹多项式;对于动力部分,采用正交Muntz-Legendre有理函数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Systems Identification using Müntz Function Neural Networks with Distributed Dynamics
This paper illustrates how the Muntz neural networks can be used effectively for identification of linear and nonlinear dynamic systems. A neuron is utilized to build the Muntz networks with locally distributed dynamics to identify input/output models of dynamic processes. For static neural network design, the orthogonal Muntz polynomials are used; for dynamic part, the orthogonal Muntz-Legendre rational functions are used
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信