{"title":"基于Müntz函数神经网络的分布式动态系统识别","authors":"B. Dankovic, Z. Jovanovic, M. Milojković","doi":"10.1109/TELSKS.2005.1572170","DOIUrl":null,"url":null,"abstract":"This paper illustrates how the Muntz neural networks can be used effectively for identification of linear and nonlinear dynamic systems. A neuron is utilized to build the Muntz networks with locally distributed dynamics to identify input/output models of dynamic processes. For static neural network design, the orthogonal Muntz polynomials are used; for dynamic part, the orthogonal Muntz-Legendre rational functions are used","PeriodicalId":422115,"journal":{"name":"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic Systems Identification using Müntz Function Neural Networks with Distributed Dynamics\",\"authors\":\"B. Dankovic, Z. Jovanovic, M. Milojković\",\"doi\":\"10.1109/TELSKS.2005.1572170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper illustrates how the Muntz neural networks can be used effectively for identification of linear and nonlinear dynamic systems. A neuron is utilized to build the Muntz networks with locally distributed dynamics to identify input/output models of dynamic processes. For static neural network design, the orthogonal Muntz polynomials are used; for dynamic part, the orthogonal Muntz-Legendre rational functions are used\",\"PeriodicalId\":422115,\"journal\":{\"name\":\"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELSKS.2005.1572170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2005.1572170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Systems Identification using Müntz Function Neural Networks with Distributed Dynamics
This paper illustrates how the Muntz neural networks can be used effectively for identification of linear and nonlinear dynamic systems. A neuron is utilized to build the Muntz networks with locally distributed dynamics to identify input/output models of dynamic processes. For static neural network design, the orthogonal Muntz polynomials are used; for dynamic part, the orthogonal Muntz-Legendre rational functions are used