多姿态人脸图像平面内旋转角度估计

Seyed Mohammad Hassan Anvar, W. Yau, K. Nandakumar, E. Teoh
{"title":"多姿态人脸图像平面内旋转角度估计","authors":"Seyed Mohammad Hassan Anvar, W. Yau, K. Nandakumar, E. Teoh","doi":"10.1109/CIBIM.2013.6607914","DOIUrl":null,"url":null,"abstract":"Classical face detection algorithm works on only near frontal faces. Extending it to other poses and in-plane rotated faces require separately trained classifiers which increases both the training and processing time. We solve this instead by developing a reference model that is capable of detecting upright faces in various poses. Then a probabilistic framework is used to estimate occurrence of in-plane rotated faces. Experimental results showed that the proposed approach can achieve face detection accuracy comparable to state-of-the-art approaches but returns more accurate in-plane rotation angle estimation and is much faster. Unlike other approaches, the proposed method is easy to train, requiring only a small number of images and only one manually labeled face image.","PeriodicalId":286155,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimating in-plane rotation angle for face images from multi-poses\",\"authors\":\"Seyed Mohammad Hassan Anvar, W. Yau, K. Nandakumar, E. Teoh\",\"doi\":\"10.1109/CIBIM.2013.6607914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical face detection algorithm works on only near frontal faces. Extending it to other poses and in-plane rotated faces require separately trained classifiers which increases both the training and processing time. We solve this instead by developing a reference model that is capable of detecting upright faces in various poses. Then a probabilistic framework is used to estimate occurrence of in-plane rotated faces. Experimental results showed that the proposed approach can achieve face detection accuracy comparable to state-of-the-art approaches but returns more accurate in-plane rotation angle estimation and is much faster. Unlike other approaches, the proposed method is easy to train, requiring only a small number of images and only one manually labeled face image.\",\"PeriodicalId\":286155,\"journal\":{\"name\":\"2013 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBIM.2013.6607914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2013.6607914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

经典的人脸检测算法仅适用于近正面人脸。将其扩展到其他姿态和平面内旋转的人脸需要单独训练分类器,这增加了训练和处理时间。我们通过开发一个能够检测各种姿势的直立面部的参考模型来解决这个问题。然后用概率框架估计平面内旋转面出现的概率。实验结果表明,该方法可以达到与现有方法相当的人脸检测精度,但返回更准确的面内旋转角度估计,并且速度更快。与其他方法不同的是,该方法易于训练,只需要少量的图像和一张手动标记的人脸图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating in-plane rotation angle for face images from multi-poses
Classical face detection algorithm works on only near frontal faces. Extending it to other poses and in-plane rotated faces require separately trained classifiers which increases both the training and processing time. We solve this instead by developing a reference model that is capable of detecting upright faces in various poses. Then a probabilistic framework is used to estimate occurrence of in-plane rotated faces. Experimental results showed that the proposed approach can achieve face detection accuracy comparable to state-of-the-art approaches but returns more accurate in-plane rotation angle estimation and is much faster. Unlike other approaches, the proposed method is easy to train, requiring only a small number of images and only one manually labeled face image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信